Northwestern Division Missouri River Basin Water Management Division # Missouri River Mainstem System # 2002-2003 Annual Operating Plan Annual Operating Plan Process 50 Years Serving the Misssouri River Basin #### DEPARTMENT OF THE ARMY NORTHWESTERN DIVISION, CORPS OF ENGINEERS 12565 WEST CENTER ROAD OMAHA, NEBRASKA 68144-3869 This Draft Annual Operating Plan (AOP) presents pertinent information regarding water management in the Missouri River Mainstem Reservoir System (System) for the remainder of 2002 through December 2003. The information provided in this AOP is based upon water management guidelines designed to meet the operational objectives of the existing Missouri River Master Water Control Manual. These guidelines are applied to computer simulations of System operation assuming five statistically derived inflow scenarios based on an analysis of water supply records from 1898 to 1997. This approach provides a good range of water management simulations for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult. The AOP information provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve its Congressionally authorized project purposes. System water management is provided by my staff at the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers located in Omaha, Nebraska. Two separate documents will also be available by the end of the calendar year entitled: "System Description and Operation" and "Summary of Actual 2001-2002 Operations." To receive copies of those documents you can contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are also available at the "Reports and Publications" link on our web site at: www.nwd.usace.army.mil/rcc. Public meetings to discuss this Draft AOP will be held at Bismarck, North Dakota on October 15, 2002, at Omaha, Nebraska on October 16, 2002, and at Jefferson City, Missouri on October 17, 2002. The primary purpose of these meetings is to present a synopsis of the Draft AOP and to allow those in attendance to make comments in person to Corps of Engineers staff. Comments can also be provided in writing to the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869. We ask that any comments be provided by November 15, 2002. The Final AOP is scheduled for publication in early January 2003. Copies of the written comments and a report on the comments received at the three public meetings will be available upon request at that time. I thank you for your interest in the operation of the Missouri River Mainstem Reservoir System. With your help, I trust we can ensure that the System is operated for all Congressionally authorized project purposes, and meets the contemporary needs of the people who benefit from it. David A. Fastabend Brigadier General, Corps of Engineers Paila Fartel **Division Engineer** ## MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM # Annual Operating Plan 2002-2003 | List c | of Table | es | ii | |--------|-------------|---|-----| | List o | f Plate | s | ii | | List c | f Abbi | reviations | iii | | Defin | ition o | f Terms | iv | | | | | | | | | | | | I. | FOR | EWORD | 1 | | | | | | | II. | PUR | POSE AND SCOPE | 2 | | | | | | | III. | | STER MANUAL REVIEW AND UPDATE | | | | ANI | D ESA CONSULTATIONS | 2 | | TT 7 | | WIDE WATER GURNLY AUGUST 2002 DECEMBER 2002 | 2 | | IV. | FUI | TURE WATER SUPPLY – AUGUST 2002 – DECEMBER 2003 | 3 | | V. | A NIN | NUAL OPERATING PLAN FOR 2002-2003 | 4 | | ٧. | AINI | NUAL OPERATING PLAIN FOR 2002-2003 | 4 | | | A. | General | 4 | | | В. | Operating Plans for the Balance of the 2002 Navigation Season | | | | C. | Operating Plan for the Winter of 2002-2003 | | | | D. | Operations During the 2003 Navigation Season | | | | Σ. | operations Buring the 2002 I turigation souson | | | VI. | SUN | MARY OF RESULTS EXPECTED IN 2002-2003 | 18 | | | | | | | | A. | Flood Control | 18 | | | B. | Water Supply and Water Quality Control | | | | C. | Irrigation | | | | D. | Navigation | | | | E. | Power | 19 | | | F. | Recreation, Fish and Wildlife | 19 | | | G. | System Storage | 22 | | | H. | Summary of Water Use by Functions | | | | | | | | VII. | TEN | TATIVE PROJECTION OF OPERATIONS THROUGH | | | | $M\Delta 1$ | RCH 2009 | 22 | ## **TABLES** | I | Natural and Gross Water Supply at Sioux City | 4 | |------|---|----| | II | Gavins Point Releases Needed to Meet Navigation Requirements | 6 | | III | Navigation Service Support for the 2003 Season | 13 | | IV | Reservoir Unbalancing Schedule | | | V | Reservoir Elevation Guidelines for Unbalancing | 16 | | VI | Peaking Capability and Sales | 20 | | VII | Energy Generation and Sales | | | VIII | Anticipated December 31, 2003 Storage in System | 23 | | IX | Missouri River Mainstem System Water Use for Calendar Years 2001, 2002, | | | | and 2003 Above Sioux City, Iowa Steady Release | 24 | | X | Missouri River Mainstem System Water Use for Calendar Years 2001, 2002, | | | | and 2003 Above Sioux City, Iowa Flow to Target | 25 | | | <u>PLATES</u> | | | 1 | Missouri River Basin Map | | | 2 | Summary of Engineering Data – Missouri River Mainstem System Reservoirs | | | 3 | System Storage | | | 4 | Gavins Point Releases | | | 5 | Fort Peck Elevations and Releases | | | 6 | Garrison Elevations and Releases | | | 7 | Oahe Elevations and Releases | | | 8 | Fort Randall Elevations and Releases | | | 9 | Reservoir Release and Unregulated Flow | | | 10 | System Gross Capability and Average Monthly Generation | | #### **ABBREVIATIONS** AOP - annual operating plan ac.ft. - acre-feet AF - acre-feet B - Billion cfs - cubic feet per second COE - Corps of Engineers CY - calendar year (January 1 to December 31) elev - elevation ft - feet FY - fiscal year (October 1 to September 30) GIS - Geographic Information System GWh - gigawatt hour KAF - 1,000 acre-feet Kcfs - 1,000 cubic feet per second kW - kilowatt kWh - kilowatt hour M - million MAF - million acre-feet MRBA - Missouri River Basin Association MRNRC - Missouri River Natural Resources Committee msl - mean sea level MW - megawatt MWh - megawatt hour plover - piping plover pp - powerplant RCC - Reservoir Control Center RM - river mile tern - interior least tern tw - tailwater USGS - United States Geological Survey yr - year #### **DEFINITION OF TERMS** Acre-foot (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons. <u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons. <u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. <u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water. <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. <u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. #### MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM ### Annual Operating Plan 2002 - 2003 #### I. FOREWORD This Annual Operating Plan (AOP) presents pertinent information and tentative plans for operating the Missouri River Mainstem Reservoir System (System) for the remainder of 2002 through December 2003 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve the Congressionally authorized project purposes. Regulation is directed by the Missouri River Basin Water Management Division (formerly the Reservoir Control Center), Northwestern Division, U.S. Army Corps of Engineers (Corps). A map of the Missouri River Basin (Basin) is shown on *Plate 1* and the summary of engineering data for the six System reservoirs is shown on *Plate 2*. This plan may require adjustments when; substantial departures from expected runoff occur, to meet emergencies, or to meet the provisions of other applicable law, including the Endangered Species Act (ESA) and the conclusion of ongoing Corps and U.S. Fish and Wildlife Service (Service) consultation under Section 7 of that Act. Results of a 5-year extension to the AOP studies (March 2004
to March 2009) will be presented in the Final AOP to serve as a guide for Western Area Power Administration's power marketing activities and those other interests that require information on reservoir conditions for long term planning. This AOP includes only the plan for future operation. Previous AOPs have included a System description and discussion of the typical operation to meet authorized purposes and a historic summary of the previous year's operation. Although not included in this AOP, they are available as separate reports upon request. To receive a copy of either the updated version of the "System Description and Operation," dated Spring 2002, or the "Summary of Actual 2001-2002 Operations," contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports will be available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc** in early 2003. As the cover reflects, this year represents the 50th year that an AOP has been prepared for the operation of the System. This process has served the Corps and the Basin well as a forum for discussion of the next year's operating plan. #### II. PURPOSE AND SCOPE Beginning in 1953, projected System operation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, state, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System operation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System operation for the remainder of the year. The spring public meetings were held in Pierre, South Dakota on April 9, 2002, Omaha, Nebraska on April 10, 2002 and Kansas City, Missouri on April 11, 2002. The attendees were given an update regarding the outlook for 2002 runoff and projected operation for the remainder of 2002. Three fall public meetings on the Draft AOP will be held on October 15, 2002 at Bismarck, North Dakota, October 16, 2002 at Omaha, Nebraska and October 17, 2002 at Jefferson City, Missouri. Preliminary draft AOP data was presented to the Missouri River Natural Resources Committee (MRNRC) on August 15, 2002. The MRNRC chose not to provide pre-draft comments. #### III. MASTER MANUAL REVIEW AND UPDATE AND ESA CONSULTATIONS In August 2001 the U.S. Army Corps of Engineers released the Revised Draft Missouri River Environmental Impact Statement (RDEIS) on the Missouri River Master Water Control Manual Review and Update. This RDEIS analyzed a range of alternatives which included changes in water releases from Gavins Point Dam recommended in a reasonable and prudent alternative (RPA) by the Service in a November 2000 Biological Opinion in which they concluded that the Corps' current operation of the Mainstem Reservoir System jeopardizes the continued existence of three protected species – the endangered interior least tern, the threatened piping plover, and the endangered pallid sturgeon. The Corps' preferred alternative and the Final EIS have not been released pending further consultations between the Corps and the Service. This EIS process with a Record of Decision (ROD) may not be completed by the time the Annual Operating Plan for 2002-2003 is finalized. As indicated below, the draft 2002-2003 AOP is based upon the guidelines in the current Missouri River Master Water Control Manual. However, this draft AOP including the Gavins Point flow releases are subject to further ongoing consultations with the Service and the Corps determination of compliance with the ESA. #### IV. FUTURE WATER SUPPLY - AUGUST 2002 - DECEMBER 2003 Water supply (runoff) into the six System reservoirs is typically low and relatively stable during the August-to-February period. The August 1 most likely runoff scenario is used as input to the Basic reservoir regulation simulation (Simulation) in the AOP studies for the period August 2002 to February 2003. Two other runoff scenarios based on the August 1 most likely runoff scenario were developed for the same period. These are the 80 percent and 120 percent of the most likely runoff scenarios, which are input to the 80 percent and 120 percent of Basic Simulations for the August 2002 to February 2003 period. Simulations for the March 1, 2003 to February 29, 2004 time period use five statistically derived inflow scenarios based on an analysis of water supply records from 1898 to 1997. This approach provides a good range of simulations for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult. The Upper Decile and Upper Quartile Simulations extend from the end of the 120 percent of Basic Simulation through February 2004. Likewise, the Median Simulation extends from the end of the Basic Simulation, and the Lower Quartile and Lower Decile Simulations extend from the end of the 80 percent of Basic Simulation through February 2004. Upper Decile runoff (34.5 million acre-feet (MAF)) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., 10 percent chance runoff could be lower than Lower Decile, and a 10 percent chance runoff could be greater than Upper Decile. The estimated natural flow 1/ at Sioux City, the corresponding post-1949 water use effects, and the net flow 2/ available above Sioux City are shown in *Table I*, where several water supply conditions are quantified for the periods August through February 2003 and the runoff year March 2003 through February 2004. The natural water supply for CY 2002 (actual January 2002 through July 2002 runoff plus the August 1 most likely runoff scenario for the August 2002 through December 2002 period) is estimated to total approximately 17.0 MAF. TABLE I NATURAL AND GROSS WATER SUPPLY AT SIOUX CITY | | Natural 1/ | Post-1949 Depletions | <u>Net 2</u> / | | | | | | | | | |--|------------------------------|------------------------------|----------------|--|--|--|--|--|--|--|--| | | (Volumes in 1,000 Acre-Feet) | | | | | | | | | | | | August through February 2003 (Most Likel | ly Runoff Scena | rio) | | | | | | | | | | | Basic | 6,600 | +200 | 6,800 | | | | | | | | | | 120% Basic | 8,000 | +300 | 8,300 | | | | | | | | | | 80% Basic | 5,300 | +200 | 5,500 | | | | | | | | | | Runoff Year March 2003 through February | 2004 (Statistica | al Analysis of Past Records) | | | | | | | | | | | Upper Decile | 34,500 | -2,500 | 32,000 | | | | | | | | | | Upper Quartile | 30,600 | -2,400 | 28,200 | | | | | | | | | | Median | 24,600 | -2,600 | 22,000 | | | | | | | | | | Lower Quartile | 19,500 | -2,400 | 17,100 | | | | | | | | | | Lower Decile | 15,500 | -2,200 | 13,300 | | | | | | | | | $\underline{1}$ / The word "Natural" is used to designate flows adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck Reservoir have also been eliminated during its period of operation prior to 1949. $\underline{2}$ / The word "Net" represents the total streamflow after deduction of the post-1949 irrigation, upstream storage, and other use effects. #### V. ANNUAL OPERATING PLAN FOR 2002-2003 A. General. The anticipated operation described in this AOP is designed to meet the operational objectives presented in the current Missouri River Master Water Control Manual (Master Manual), which was first published in the 1960's. Consideration has been given to all of the authorized project purposes, and to the needs of threatened and endangered (T&E) species, and relies on a wealth of operational experience. Operational experience available for preparation of the 2002-2003 AOP includes 13 years of operation at Fort Peck Reservoir (1940) by itself plus 49 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System operation. This operational experience includes lessons learned during the 6 consecutive years of drought of the late-1980's through 1992 as well as the high runoff period that followed. Runoff during the period 1993 to 1999 was greater than Upper Quartile level during 5 of those 7 years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual operational experience, many background operational studies for the completed System are available for reference. This operational experience has shown that additional water conservation measures, beyond the specific technical criteria published in the current Master Manual, may be required to meet the operational objectives of the current Master Manual, if System water-in-storage (storage) is below 52 MAF on July 1 of any year. These additional conservation measures may be necessary during drought to offset increased release requirements for water supply due to degradation (lowering) of the channel bed, and to serve navigation, while meeting the
Corps' obligations, in consultation with the Service, under the ESA. After each runoff year (March 1 through February 28) an analysis is performed to determine how much additional water conservation, if any, is needed to compensate for releases in excess of the specific technical criteria in that runoff year. If additional water conservation measures are called for, they are applied to the next runoff year's operation. Although July 1, 2002 System storage was only 48.8 MAF, no additional System releases were made for any project purpose above the specific technical criteria in the 2001 runoff year. Therefore, no additional conservation measures beyond the specific technical criteria presented in the Master Manual will be implemented in the 2002 runoff year. Two sets of Simulations for the 2003 runoff year are shown in the final section of this AOP. The first set, studies 4 through 8 assume a "steady-release" from Gavins Point from mid-May through August to prevent T&E bird species from nesting at low elevations and thereby help protect them from inundation. The second set of Simulations, studies 9 through 13, assume a "flow-to-target" regulation that was used during the 2001 and 2002 T&E bird species nesting season. A flow-to-target regulation would typically result in higher System releases as the T&E nesting season progresses. This is due to reduced tributary inflows downstream as the summer heat builds and precipitation wanes. Increasing releases as the nesting season progresses can inundate nests and chicks on low-lying habitat. Because fledge ratio (numbers of chicks reared to flight stage) goals for the Missouri River are being met, the Corps is continuing to consult with the Service to determine whether under the flow-to-target scenario, low-lying T&E species' nests and chicks at risk of inundation from increasing releases would be moved to higher terrain or a captive rearing facility. System releases during the navigation season for all Simulations are based on a service level determination in accordance with the March 15 and July 1 storage checks presented in the current Master Manual. Average releases necessary to meet full service flow targets during the navigation season are shown in *Table II*. Under the steady-release Simulation, System release would be set in mid-May to the level expected to be required to meet downstream flow targets through August. This results in releases that exceed the amount necessary to meet downstream flow targets during the early portion of the T&E bird nesting season. # TABLE II GAVINS POINT RELEASES NEEDED TO MEET FULL SERVICE FLOW TARGETS 1950 - 1996 (Discharges in 1,000 cfs) | Runoff | | | | | | | | | | |-------------------------|------------|------------|------------|------------|------------|------------|------------|------|----------------| | <u>Scenario</u> | <u>Apr</u> | <u>May</u> | <u>Jun</u> | <u>Jul</u> | <u>Aug</u> | <u>Sep</u> | <u>Oct</u> | Nov | <u>Average</u> | | | | | | | | | | | | | Median, Upper Quartile, | | | | | | | | | | | Upper Decile | 26.7 | 28.0 | 27.9 | 31.6 | 33.2 | 32.6 | 32.0 | 31.1 | 30.4 | | | | | | | | | | | | | Lower Quartile, | | | | | | | | | | | Lower Decile | 29.8 | 31.3 | 31.2 | 34.3 | 34.0 | 33.5 | 33.1 | 31.2 | 32.3 | System releases under the flow-to-target Simulation would be set at only the level necessary to meet downstream flow targets. The flow-to-target regulation would conserve more water in the System, which would keep the lake levels at the upper three System projects at relatively higher levels. A flow-to-target regulation would conserve approximately 200,000 to 800,000 AF as compared to a steady-release regulation. The specific technical criteria for the September 1 storage check to determine winter release rates were not used in the Simulations. A minimum release of 13,000 cubic feet per second (cfs) was used for all Median and below Simulations for winter 2002-2003 and winter 2003-2004. This will allow downstream winter flows sufficient to allow the operation of downstream powerplants, as provided for in the current Master Manual, and is based on operational experience. Application of the specific technical criteria for the September 1 storage check would result in winter releases in 2003-2004 for the Upper Decile and Upper Quartile Simulations above the 13,000 cfs level, but System winter releases will be held to 13,000 cfs as a water conservation measure during the current drought, except for the Upper Decile flow-to-target Simulation. The Upper Decile flow-to-target Simulation utilizes a 16,000 cfs winter 2003-2004 release to lower System storage to the base of the annual flood control (57.1 MAF) by March 1, 2004. The 13,000 cfs winter release will reduce System storage an additional 536,000 AF for both the Basic and 80% Simulations for winter 2002-2003 compared to the application of the specific technical criteria. Because releases in July and August 2002 were lower in accordance with the Service's interpretation of their November 2000 Biological Opinion, than those needed to provide minimum service, 378,000 AF of storage was conserved as compared to regulation under the specific technical criteria. The reduction in storage in the 2002 runoff year, as compared to regulation under the specific technical criteria, is 158,000 AF. Only the Median, Lower Quartile, and Lower Decile Simulations show System storage below 52 MAF on July 1, 2003. The Simulations for those three runoff scenarios also show that application of the specific technical criteria result in minimum service except for the Median flow-to-target Simulation, which is 400 cfs above minimum service based on the July 1 System storage check. Shortening of the 2003 navigation season is therefore the only available option for additional water conservation. If the Simulations verify, the 2003 navigation season would be shortened by 5 days for Median, Lower Quartile and Lower Decile runoff to compensate for the additional water released during the winter 2002-2003. The Upper Quartile and Upper Decile Simulations project System storage on July 1 above 52 MAF, and therefore would follow the specific technical criteria. During the late 1980's-early 1990's drought years, a two-day-down, one-day-up peaking cycle was utilized. This regulation provided for lower flows for two out of three days to conserve water in the System while insuring that T&E bird species did not nest on low-lying habitat. We have not included a peaking cycle in any of the Simulations because of concerns voiced by the Service regarding negative impacts to river fish. Intrasystem releases are adjusted to best serve the multiple-purpose functions of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. System releases for all runoff conditions are at less than full service flows due to low System storage. A reanalysis of the average monthly Gavins Point releases needed to meet service level targets requirements was completed in 1999. The study used the Daily Long Range Study (DLRS) model for the period 1950 to 1996. As part of this study, the relationship between annual runoff upstream of Sioux City and the average Gavins Point release required for the navigation season was analyzed. The study concluded that generally more water was needed downstream to support navigation during years with below normal upper basin runoff than during years with higher upper basin runoff. Therefore, regulation studies since 1999 use two levels of System release requirements: one for Median, Upper Quartile, and Upper Decile runoff scenarios, and another for Lower Quartile and Lower Decile scenarios. The updated release requirements for full service navigation used in the development of the 2002-2003 AOP are given in *Table II*. Releases required for minimum service navigation support are 6,000 cfs less than the numbers provided in *Table II*. A final report detailing the procedures used in this study is available on our web site. The flow-to-target Upper Decile Simulation reaches the desired 57.1 MAF level on March 1, 2004. This is due to water conservation provided by less than full service releases and the reduced 2003-2004 winter release. The steady-release Upper Decile Simulation results in System storage at 57.0 MAF on March 1, 2004. The Median and above Simulations also include releases that provide a steady to rising lake level in the three large upper reservoirs during the spring fish spawn period. Similar regulation in the past has resulted in a higher fish reproduction success. As previously stated, Gavins Point releases will not be cycled to conserve water under any of the five studied runoff scenarios. However, it may be necessary to cycle releases for flood control operations during the T&E species nesting season. Actual System operation from January 1 through July 31, 2002 and the operating plans for each project for the remainder of 2002 with the Basic Simulation and for CY 2003 using the five runoff scenarios described on page 3 are presented on *Plates 3 through 8*, inclusive. An exception is the omission of Big Bend, since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual operations during the period 1953 through 2001. **Plate 9** illustrates for Fort Peck, Garrison, Oahe, and Gavins Point Dams the actual reservoir releases (Regulated Flow) as well as the Missouri River flows (Unregulated Flow) that would have resulted if the reservoirs were not in place during the period January 2001 through July 2002. **Plate 10** presents past and simulated gross monthly, average power generation, and gross peaking capability for the System. **B.** Operating Plans for the Balance of the 2002 Navigation Season. Gavins Point releases were held to a rate of
25,500 cfs from July 1 through August 14 due to T&E bird species nesting below Fort Randall and Gavins Point. This nesting activity resulted in flows of up to 7,000 cfs less than minimum service being provided at Kansas City and downstream on the Missouri River. After T&E bird species nesting activity concluded, releases were increased from 25,500 cfs to 31,000 by August 15 to meet downstream minimum service flow requirements. Releases through the fall season will continue to be adjusted as needed to provide minimum service (6,000 cfs less than full service) flow support to navigation as computed by the July 1 System storage check. System storage was 48.2 MAF on July 1, 2002, substantially less than the 59.0 MAF minimum storage required to provide full service flows. The current storage is also much less than the 50.5 MAF 1 July check for greater than minimum service flows; therefore a significant System storage gain will have to occur before a service level greater than minimum service is provided. A full 8-month navigation season will be provided in 2002. System storage declined to 49.3 MAF on December 1 at the close of the 2001 navigation season. The winter brought virtually no significant plains snowpack. The mountain snowpack peaked in the reach above Fort Peck at 91 percent of normal on May 11th, which was about 26 days later than normal. The mountain snowpack in the reach between Fort Peck and Garrison peaked at 85 percent of normal on April 22nd. The total runoff for 2002 is expected to be between Lower Decile and Lower Quartile with a great deal of variability in the way the runoff has occurred. January and February were 116 and 85 percent of normal, respectively. March fell to only 41 percent, and April was 60 percent of normal with no plains snowpack to melt. The months of May, June, and July were well below average at 52, 79, and 62 percent of normal, respectively, because of the below normal mountain snowmelt. Runoff for August is 65 percent of normal and September is only 66 percent of normal. The last three months of the year are forecast to have normal runoff; therefore, the calendar year 2002 runoff is expected to be near 17.0 MAF (67 percent of normal). The closing dates for ending the 2002 navigation season will be November 22 at Sioux City, November 24 at Omaha, November 25 at Nebraska City, November 27 at Kansas City, and December 1 at the mouth of the Missouri River near St. Louis. Simulations for the August 1 to December 1 period indicate that 2.8 billion kilowatt hours (kWh) of energy will be generated by the System powerplants, 0.9 billion kWh below normal. <u>Fort Peck</u> releases will continue at 9,000 cfs through mid-September, then reduced to 5,000 cfs for the remainder of the 2002 navigation season for intrasystem regulation. The Basic Simulation indicates the level of Fort Peck Lake is expected to decline 1.4 feet from elevation 2219.8 feet above mean sea level (msl) to 2218.4 feet msl by the end of the navigation season, 15.9 feet lower than the 1967-2001 long term average. Garrison releases will be maintained at 21,000 cfs through September 13, and then be lowered to about 17,000 cfs for the remainder of the month. October through mid-November releases will average 14,000 cfs, and then increase to 20,000 cfs by the end of November. The level of Lake Sakakawea is expected to decline steadily by 4.1 feet from elevation 1831.1 feet msl to 1827.0 feet msl by the end of the navigation season, 11.2 feet below the long-term average. Oahe releases will be reduced from 29,000 cfs in August to 11,000 cfs in October to achieve a scheduled Fort Randall drawdown to elevation 1337.5 feet msl by the end of October, 4-weeks earlier than normal. Releases will be adjusted to serve the variable power loads. Lake Oahe will lower steadily by 4.5 feet throughout the period from elevation 1590.8 to elevation 1586.3 feet msl by the close of the navigation season, 15.5 feet lower than the long-term average. <u>Big Bend</u> releases will generally parallel those from Oahe. Lake Sharpe will fluctuate between 1420.0 and 1421.0 feet msl for weekly cycling during high power load periods. Reservoir fluctuations of a foot are scheduled during the course of most weeks in order to follow peaking power demands. Storage lost during the week is regained during the succeeding weekend period of lower power demands. Fort Randall releases will generally parallel those from Gavins Point. Lake Francis Case will fall steadily during the September-through-October period from the 1355.2 feet msl end-of-August elevation to 1337.5 feet msl. The drawdown will be one month earlier than normal to permit the permanent protection of a Native American gravesite located at White Swan. Project personnel requested a further lowering to elevation 1335.0 feet msl by November 11, 2002 with a gradual rise to elevation 1338.0 feet msl by November 18 to permit placement of rock below the normal annual minimum elevation. The lowering of Lake Francis Case will provide sufficient capacity to store a reasonable level of power releases from Oahe and Big Bend during the coming winter season. Gavins Point releases will be in the range of 25,000 to 31,000 cfs by the end of the navigation season. Prior to 1992, Lewis and Clark Lake was maintained at a target elevation of 1208.0 feet msl from September to mid-February when it was lowered to elevation 1205.0 feet msl, the beginning of the runoff season. The September to mid-February target was lowered to elevation 1207.0 feet msl in 1992 to reduce shoreline erosion and displacement of riprap on the dam. The March-August elevation was raised to elevation 1206.0 feet msl to improve recreational access. After modification of the riprap and coordination with the States of South Dakota and Nebraska, a decision was made to return to the 1208.0 feet msl elevation for the late summer through winter 2001-2002 periods. The State of South Dakota experienced damage to recreation areas last winter and Water Management agreed to lower the target elevation by one-half foot to elevation 1207.5 feet msl from late summer through winter 2002-2003. Lewis and Clark Lake will rise 2.5 feet from elevation 1205.0 to near elevation 1207.5 feet msl during the remainder of the 2002 navigation season that ends December 1. C. Operating Plan for the Winter of 2002-2003. Due to low System storage, the specific technical criteria presented in the current Master Manual for the September 1 storage check were not used to determine winter 2002-2003 and winter 2003-2004 System releases in the Simulations. At a System storage level of 58.0 MAF or above on September 1, the specific technical criteria calls for a full service release rate for the following winter, and minimum service releases if system storage is at or below 43.0 MAF. Full and minimum service winter release rates are an average Fort Randall release of 15,000 and 5,000 cfs, respectively. The storage on September 1, 2002, given the most likely runoff scenario, would be 46.9 MAF, 11.1 MAF less than the 58.0 MAF required to provide a full service release of 15,000 cfs from Fort Randall Dam. The September 1 storage check specifies a Fort Randall winter release rate of only 7,600 cfs. This corresponds to a Gavins Point winter release of 9,000 cfs, which is much too low based on operational experience with winter ize. Therefore, winter System releases in all Simulations are set to a minimum based on experience (13,000 cfs) for winter 2002-2003 and winter 2003-2004 except for the Upper Decile flow-to-target Simulation. Although the September 1 storage check for the Upper Decile and Upper Quartile Simulations specifies a System release greater than 13,000 cfs, winter releases are not anticipated to exceed 13,000 cfs as a water conservation measure. It may be necessary at times to increase System releases to provide adequate downstream flows if ice jams or blockages form which temporarily restrict flows. These events are expected to occur infrequently and be of short duration based on past experiences. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods that may be impacted below rapidly forming ice jams. For the winter period from the close of the 2002 navigation season on December 1, 2002 until the opening of the 2003 navigation season on April 1, 2003, operations are expected to be as follows: Fort Peck releases are expected to average 10,000 cfs in December, 10,500 cfs in January and 10,000 cfs in February. The December release is equal to the 1967-2001 average and the January and February releases are 1,000 cfs and 2,000 cfs below average, respectively. Fort Peck Lake with the Basic Simulation is expected to lower 3.6 feet to elevation 2214.8 feet msl by the end of the winter period. Carryover multiple purpose storage in the three large upper reservoirs will be near a balanced condition on March 1, 2003. The lake is expected to rise 1.2 feet to elevation 2216.0 feet msl by March 31, 16.7 feet below normal. <u>Garrison</u> releases will be adjusted to serve winter power loads and balance System storage. Releases will follow a more typical pattern than last year's record low 13,000 cfs winter release. Releases will be scheduled at 20,000 cfs at the time of normal freeze-in in December and likely will have to be reduced for a short period to 18,000 cfs during the freeze-in in the Bismarck area in an attempt to not exceed the target 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Garrison releases are expected to average 19,000 to 20,000 cfs at the beginning of the winter period and gradually increase to 23,000 cfs in January and 24,000 cfs in February, 1,000 to 1,500 cfs less than normal. Lake Sakakawea is expected to lower from near elevation 1827.0 feet msl to elevation 1821.7 feet msl by March 1, 15.8 feet below the base of the annual flood control storage zone. The Median
Simulation indicates the lake will rise to elevation 1822.9 by March 31, which would be 12.8 feet below normal. Oahe releases for the winter season will provide backup for the Fort Randall and Gavins Point releases plus fill the recapture space available at Fort Randall consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average between 15,000 and 16,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration. The Lake Oahe level is expected to gradually rise from elevation 1586.3 feet msl at the end of the 2002 navigation season to elevation 1591.2 by March 1, then rise to elevation 1593.8 feet msl by the end of March, 12.8 feet below normal. <u>Lake Sharpe</u> at Big Bend will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter. Fort Randall releases will average 11,000 cfs. Lake Francis Case is expected to rise from a low of about 1337.5 feet msl at the end of the 2002 navigation season to near elevation 1350.0, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe is quite low at that time, measures will be taken to raise Lake Francis Case to near elevation 1353.0 by March 1. It is likely that a Lake Francis Case level above elevation 1353.0 feet msl, to as high as 1355.2, will be reached by the end of the winter period on March 31, if runoff conditions permit. The level of Lake Francis Case above the White River delta near Chamberlain, South Dakota will likely remain at a higher elevation than the lake below the delta from mid October through December, due to the damming effect of this delta area. Gavins Point releases will be gradually reduced beginning the last week of November to a winter level of about 13,000 cfs. These releases should be adequate to maintain water levels necessary during freeze-in for downstream water intakes; however, adjustments to the releases may be required if significant reduction in flows occurs downstream due to ice blockages. Lewis and Clark Lake will generally be near elevation 1207.5 feet msl until late February when it will be lowered to elevation 1206.0 feet msl for controlling spring floods, primarily from the Niobrara River and Ponca Creek along the Fort Randall to Gavins Point reach. System storage for all five runoff conditions will be substantially below the base of the annual flood control zone by March 1, 2003, the beginning of next year's runoff season. **D.** Operations During the 2003 Navigation Season. The Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff scenarios studied for this year's AOP follow the specific technical criteria presented in the current Master Manual for navigation service flow support. The normal 8-month navigation season length is shortened for Median, Lower Quartile, and Lower Decile as shown in *Table III* to compensate for the extra water released during winter 2002-2003. Releases from Fort Peck, Garrison, and Fort Randall will follow repetitive daily patterns from early May, at the beginning of the T&E species nesting season, to the end of the nesting in late August. As previously stated, steady System releases for all five runoff scenarios are shown during the tern and plover nesting season (mid-May to the end of August) to keep birds from nesting at low elevations for the steady-release Simulations. The flow-to-target Simulations follow March 15 and July 1 System storage checks. All runoff scenarios except Lower Quartile and Lower Decile would provide rising pool levels in the spring fish spawn period. All five runoff scenarios studied for this year's AOP are based on gradually increasing System releases to provide navigation season flow rates at the mouth of the Missouri near St. Louis by April 1, 2003, the normal navigation season opening date. The corresponding dates at upstream locations are: Sioux City, Iowa, March 23; Omaha, Nebraska, March 25; Nebraska City, Nebraska, March 26; and Kansas City, Missouri, March 28. The studies illustrated on *Plates 3 through 8* and summarized in Table III are based on providing less than full service flows, a full 8-month season for Upper Decile and Upper Quartile runoff scenarios, and a shortened season for Median, Lower Quartile, and Lower Decile runoff. Upper Decile releases are 4,800 cfs less than full service in the spring and 1,700 cfs less than full service in the summer and fall for the steady-release Simulations. July 1 System storage in the Upper Decile flow-to- target Simulation specifies 1,200 less than full service in the summer and fall. Releases for Upper Quartile runoff are 4,900 cfs below full service in the spring, increasing to near intermediate service during the summer and fall for the steady-release Simulation. Summer and fall Upper Quartile flow-to-target releases are 400 cfs above intermediate service. Minimum service flows for less than an 8-month navigation season will be provided should Median, Lower Quartile, or Lower Decile runoff occur except Median flow-to-target which is 400 cfs above minimum service based on July 1 System storage. Navigation flow support for the 2003 season will be determined by actual System storage on March 15 and July 1. Gavins Point releases may be quite variable during the 2003 navigation season but are expected to range from 25,000 to 32,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant. The Corps is continuing to consult with the Service on the lower summer flows recommended in their November 2000 Biological Opinion. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 3 through 8* for the steady-release Simulations. Flow-to-target plots are not shown because the difference cannot be seen at the scale provided except for the Median Gavins Point release shown on *Plate 4*. Ample regulatory storage space exists in the System to control flood inflows under all conditions studied. *Table III* summarizes the navigation service support projected for the 2003 navigation season for the steady-release and flow-to-target Simulations. TABLE III NAVIGATION SERVICE SUPPORT FOR THE 2003 SEASON #### STEADY-RELEASE | | Runoff | 2003 System | n Storage | Flow Level | Length | | | | | | |------|----------|-------------|-----------|---------------------------|-------------|------------|--|--|--|--| | | Scenario | March 15 | July 1 | July 1 Below Full Service | | | | | | | | | (MAF) | (MAF) | (MAF) | (in | cfs) | (Months) | | | | | | | | | | Spring | Summer/Fall | | | | | | | U.D. | 34.5 | 47.7 | 56.5 | -4,800 | -1,700 | 8 | | | | | | U.Q. | 30.6 | 47.5 | 54.7 | -4,900 | -3,100 | 8 | | | | | | Med | 24.6 | 45.4 | 50.6 | -6,000 | -6,000 | 8 - 5 days | | | | | | L.Q. | 19.5 | 43.6 | 46.6 | -6,000 | -6,000 | 8 - 5 days | | | | | | L.D. | 15.5 | 43.5 | 44.3 | -6,000 | -6,000 | 8 - 5 days | | | | | #### **FLOW-TO-TARGET** | | Runoff | 2003 System | n Storage | Flow Level | Above or | Length | |------|----------|-------------|-----------|---------------|-------------|------------| | | Scenario | March 15 | July 1 | Below Fu | ll Service | of Season | | | (MAF) | (MAF) | (MAF) | (in | cfs) | (Months) | | | | | | Spring | Summer/Fall | | | U.D. | 34.5 | 47.7 | 57.3 | -4,800 | -1,200 | 8 | | U.Q. | 30.6 | 47.5 | 55.3 | -4,900 | -2,600 | 8 | | Med | 24.6 | 45.4 | 51.1 | -6,000 | -5,600 | 8 - 5 days | | L.Q. | 19.5 | 43.6 | 46.8 | -6,000 | -6,000 | 8 - 5 days | | L.D. | 15.5 | 43.5 | 44.6 | -6,000 | -6,000 | 8 - 5 days | The two modified reservoir operations shown in the previous two Annual Operating Plans cannot be accomplished in 2003 due to low System storage. When System storage recovers sufficiently, both these operations will be pursued based on recommendations presented to the Corps in the Service's November 2000 Biological Opinion regarding the operation of the System. The first of these two modified operations are tests of flow modifications for T&E species. When Fort Peck Lake has adequate water above the spillway crest by mid to late May of any year, a T&E flow modification "mini-test" will be conducted in early June to monitor effects of higher spring releases and warmer water released from the spillway. It will also allow for an evaluation of the integrity of the spillway structure given the potential for increased frequency of use. Streambank erosion and fishing impacts will also be monitored. During the Fort Peck "mini-test," which will last about 4 weeks, flows will vary from 8,000 to 15,000 cfs as various combinations of spillway and powerplant releases are monitored. The maximum spillway release of 11,000 cfs will combine with a minimum powerplant release of 4,000 cfs for 6 days. This operation will be timed to avoid lowering the lake during the forage fish spawn. The "mini-test" will not be conducted if sufficient flows will not pass over the spillway crest (elevation 2225 feet msl). A minimum lake elevation of about 2229 feet msl is needed during the test to avoid unstable flows over the spillway. Results of the Simulations show that this elevation will not be achieved in 2003 for any of the five runoff scenarios. A more extensive test with a combined 20,000 to 30,000 cfs release from Fort Peck is scheduled to be conducted beginning in early June in the year following the "mini-test" to determine if warm water releases will benefit the native river fishery. Peak outflows during the full test would be maintained for 2 weeks within
the 4-week test period. Any permanent change to the Fort Peck operation to enhance flows for T&E species will be considered as part of the ongoing Master Manual Review and Update. The second modified operation involves unbalancing the three large upper reservoirs to benefit reservoir fishery and the T&E species as shown on *Table IV*. AOP studies indicate the large reservoirs will be balanced on March 1, 2003. Should Upper Decile or Upper Quartile runoff occur in 2003, studies indicate Fort Peck Lake will be 4.0 feet above a balanced condition, Lake Sakakawea will be nearly 3.0 feet below a balanced condition, and Lake Oahe will be balanced on March 1, 2004. Reservoir unbalancing is computed based on the percent of the carryover multiple purpose pool that remains in Fort Peck Lake, Lake Sakakawea, and Lake Oahe. This would permit the Fort Peck T&E flow modification "mini-test" in the spring of 2004, as described in the previous paragraph. Median or lower runoff does not sufficiently refill the reservoirs in 2003 and no unbalancing would occur in spring 2004. The unbalancing would alternate at each project; high one year, float (normal operation) the next year, and low the third year as shown on *Table IV*. *Table V* shows the lake elevations proposed by the MRNRC at which the unbalancing would be terminated. *Table V* indicates that no reservoir unbalancing should occur for any of the five runoff scenarios in 2003. ### Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement As discussed in the section above, the 2002-2003 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the Service. Under all Simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the Service. Because a Record of Decision (ROD) may not be signed for the Master Manual revision by next spring, the 2002-2003 AOP will follow the guidelines of the Current Water Control Plan (CWCP) presented in the current Master Manual. System regulation under the CWCP in 2003 will most likely provide the flow-related attributes recommended by the Service in their November 2000 Biological Opinion. If the drought continues, minimum service flows will be provided from April 1 through the T&E bird species nesting season. Minimum service flows will likely result in sufficient habitat along the river reaches to meet fledge ratio goals for the T&E bird species recommended in the November 2000 Biological Opinion. Lower than normal pool levels under all runoff scenarios will continue to provide quality nesting habitat for piping plovers along the shoreline of the reservoirs. These low summer flows will continue to be a subject of the ongoing ESA consultation with the Service. TABLE IV RESERVOIR UNBALANCING SCHEDULE | | Fort 1 | Peck | Garı | rison | Oahe | | | | | |------|---------------------------|--------------|---------------------------|--------------|---------------------------|--------------|--|--|--| | Year | March 1 | Rest of Year | March 1 | Rest of Year | March 1 | Rest of year | | | | | 2003 | Balance | High | Balance | Low | Balance | Float | | | | | 2004 | High | Float | Low | Hold peak | Raise & hold during spawn | Float | | | | | 2005 | Raise & hold during spawn | Float | High | Float | Low | Hold peak | | | | | 2006 | Low | Hold peak | Raise & hold during spawn | Float | High | Float | | | | #### **Notes:** **Unbalancing:** 2003 "Rest of Year" and 2004 unbalancing for Upper Quartile or greater runoff in 2003. **Float year:** Normal operation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.1 MAF on March 1. **Low year:** Begin low, then hold peak the remainder of the year. **High year:** Begin high, raise and hold pool during spawn, then float. # TABLE V MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING | | Fort Peck | Garrison | Oahe | |------------------------------|--------------------------|----------------------|----------------------| | Implement unbalancing if | | | | | March 1 reservoir | 2234 | 1837.5 | 1607.5 | | elevation is above this | feet msl | feet msl | feet msl | | level. | | | | | Implement unbalancing if | | | | | March 1 reservoir | | | | | elevation is in this range | 2227-2234 | 1827-1837.5 | 1600-1607.5 | | and the pool is expected to | feet msl | feet msl | feet msl | | raise more than 3 feet after | | | | | March 1. | | | | | | Avoid lake level decline | Schedule after spawn | Schedule after spawn | | Scheduling Criteria | during spawn period | period of April 20 – | period of April 8 – | | | which ranges from | May 20 | May 15 | | | April 15 – May 30 | | | Under the CWCP the Corps would not implement a spring rise from Gavins Point Dam in 2003. The November 2000 Biological Opinion did not recommend implementation of a spring rise from the System during drought conditions. In addition, the Opinion recommends a spring rise on average once every three years. Implementation of the CWCP for 2003 would not preclude the Corps from meeting this recommendation if the Corps decides to implement a spring rise in future years. Potential implementation of a spring rise from Gavins Point Dam will continue to be a subject of the ongoing ESA consultation with the Service. In addition to water management, other activities are also being undertaken by the Corps to assist in the survival of the endangered species on the Missouri river. Habitat creation for terns, plovers and pallid sturgeon, pallid sturgeon hatchery propagation, and a variety of studies are examples of some of these activities. A complete discussion of these activities can be found in the report entitled "Annual Report for the Missouri River Biological Opinion for 2001" prepared by the Omaha District, U.S. Army Corps of Engineers. <u>Fort Peck</u> releases during the bird nesting season will range from 8,500 cfs for Upper Decile runoff to 9,500 cfs for Median and below runoff. This regulation should result in habitat conditions for nesting terms and plovers similar to what was available in 2002. If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated while helping to lower river stages at downstream nesting sites. April releases should be adequate for trout spawning below the project. A rising pool in the April-to-May sport fish spawning season will be dependent upon the ever changing daily inflow pattern to the reservoir but appears possible with all AOP Simulations. The T&E flow modification "mini-test" will not be run under any runoff scenario. Fort Peck Lake must be at elevation 2229 msl to allow releases through the spillway. <u>Garrison</u> will have a reduction in flows during the tern and plover nesting season under all runoff scenarios. The reductions will be in the 500- to 1,000-cfs range. Hourly peaking will be limited to no more than 30,000 cfs for 6 hours if the daily average release is lower than 28,000 cfs. This will limit peak stages below the project for nesting birds. <u>Lake Sakakawea</u> elevations will not reach levels considered necessary for optimum fish spawning during the month of May for any of the runoff scenarios. In addition to the runoff conditions, the actual timing of the rise in lake elevation will be dependent upon the pattern of inflow at that time. Oahe releases in the spring and summer will back up those from Gavins Point. Oahe's elevation in the spring will be steady or rising given Median or higher runoff. The actual timing of the rise in lake elevation will be dependent upon the pattern of inflow at that time. Under all AOP Simulations, the Oahe pool will fall during the summer. <u>Fort Randall</u> will be operated to provide for a pool elevation near 1355 during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses, and the lake will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. Hourly releases from Fort Randall, during the 2003 nesting season will be limited to 37,000 cfs. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer if conditions turn dry. Gavins Point. If the steady-release concept is adopted in 2003, Gavins Point releases will be increased in May for all runoff scenarios when terns and plovers begin to initiate nesting. The release rate will be based on an assessment of flows needed to support the service level targets in August. This will result in steady flows during the nesting season. Based on 2002 nesting season results, it is anticipated that sufficient habitat will be available above the release rates to provide for successful nesting. The resulting steady release prevents inundation of nests and chicks. Cycling releases every third day is not planned during the 2003 nesting season except during downstream food control operations. If the flow-to-target concept is adopted in 2003, releases will be set to meet the specified navigation service level with increases made as necessary during the T&E bird species nesting season. The Gavins Point pool will be operated near 1206.0 feet msl in the spring and early summer with variations day to day due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk of nest inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E species nesting below the Gavins Point project that must be preserved, Gavins Point releases are restricted during the nesting season. Second,
unexpected rainfall runoff between Fort Randall and Gavins Point can result in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. Third, the operation of Gavins Point for downstream flood control may necessitate sudden release reductions to prevent downstream bird losses. And finally, high releases required in wet years make nest inundation more likely. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of Lewis and Clark Lake. The pool will be increased to elevation 1207.5 feet msl following the nesting season #### VI. SUMMARY OF RESULTS EXPECTED IN 2002-2003 With System operations in accordance with the 2002-2003 AOP outlined in the preceding pages, the following results can be expected. **A.** <u>Flood Control.</u> All runoff scenarios studied will begin next year's runoff season on March 1, 2003, substantially below the desired 57.1 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone plus an additional 10.8 to 14.1 MAF of the carryover multiple use zone will be available to store runoff. The System will be available to significantly reduce peak discharges for all floods that may originate above the System. Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, although recreation access may be difficult at some locations for the lower runoff scenarios. - **B.** Water Supply and Water Quality Control. Although below normal winter releases are being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate water supply problems. - **C.** <u>Irrigation</u>. Scheduled releases from the System reservoirs will be ample to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Tributary irrigation water usage is fully accounted for in the estimates of water supply. - **D.** <u>Navigation</u>. Service to navigation in 2003 would be scheduled below full service flow support for all five runoff scenarios. Reductions below full service for the steady-release and flow-to-target Simulations are shown in *Table III*. Although these Simulations provide a comparison of typical flow support under varying runoff conditions that cover 80 percent of the historic runoff conditions, the actual rate of flow support for the 2003 navigation season will be based on actual System storage on March 15 and July 1, 2003. Upper Decile and Upper Quartile Simulations show an 8-month navigation season. The Median, Lower Quartile and Lower Decile Simulations shorten the season 5 days. The anticipated service level and season length for all runoff conditions simulated are shown in *Table III*. - **E. Power.** *Tables VI* and *VII* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2002 through December 2003. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments. - **F.** Recreation, Fish and Wildlife. The basic operations of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. Special operational adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs and for increasing usage of the regulated reaches of the Missouri River downstream of the reservoirs. Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's should be adequate to provide lake access next year even under the Lower Decile runoff scenario. However, boat ramps in a few areas where the ramps could not be extended may become unusable. This will affect the normal use patterns, as visitors will have to seek out areas with usable boat ramps. Boat ramp elevations for Fort Peck, Garrison, Oahe and Fort Randall were added in 2001 to our web site at: www.nwd-mr.usace.army.mil/rcc. The effects of the simulated System operation during 2002-2003 on fish and wildlife are included in the section entitled, "Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement." TABLE VI PEAKING CAPABILITY AND SALES (Steady Release Regulation) (1,000 kW at plant) | | Estimated |------|-----------|------|-------------|----------|-----------|------|---|------------------------------|------|--------------|------------|------|-------------|-------------------|----------|-------------|-------------|--|--| | | Committed | | | | | | | | | | | | | Exp | ected To | otal | | | | | | Sales* | Ex | pected | C of E C | Capabilit | у | | Expected Bureau Capability** | | | | | | System Capability | | | | | | | 2002 | _ | | <u>120%</u> | Basic | 80% | | | | 120% | <u>Basic</u> | <u>80%</u> | | | 120% | Basic | <u>80%</u> | Aug | 2133 | | 2141 | 2139 | 2136 | | | | 190 | 181 | 180 | | | 2331 | 2320 | 2316 | | | | | Sep | 1475 | | 2136 | 2131 | 2124 | | | | 191 | 181 | 178 | | | 2327 | 2312 | 2302 | | | | | Oct | 1400 | | 2100 | 2090 | 2079 | | | | 194 | 183 | 180 | | | 2294 | 2273 | 2259 | | | | | Nov | 1783 | | 2096 | 2081 | 2066 | | | | 194 | 183 | 176 | | | 2290 | 2264 | 2242 | | | | | Dec | 1965 | | 2074 | 2057 | 2039 | | | | 190 | 181 | 170 | | | 2264 | 2238 | 2209 | 2003 | Jan | 2214 | | 2096 | 2076 | 2058 | | | | 185 | 178 | 167 | | | 2281 | 2254 | 2225 | | | | | Feb | 1837 | | 2113 | 2090 | 2069 | | | | 183 | 177 | 164 | | | 2296 | 2267 | 2233 | | | | | | | U.D. | <u>U.Q.</u> | Med. | L.Q. | L.D. | U | .D. | U.Q. | Med. | L.Q. | L.D. | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | Mar | 1678 | 2181 | 2174 | 2144 | 2111 | 2108 | 1 | 92 | 192 | 182 | 163 | 163 | 2373 | 2366 | 2326 | 2274 | 2271 | | | | Apr | 1480 | 2204 | 2192 | 2153 | 2111 | 2106 | 1 | 95 | 195 | 190 | 164 | 164 | 2399 | 2387 | 2343 | 2275 | 2270 | | | | May | 1385 | 2223 | 2206 | 2163 | 2113 | 2100 | 2 | 201 | 203 | 199 | 174 | 174 | 2424 | 2409 | 2362 | 2287 | 2274 | | | | Jun | 1660 | 2259 | 2238 | 2194 | 2139 | 2109 | 2 | 11 | 212 | 207 | 182 | 182 | 2470 | 2450 | 2401 | 2321 | 2291 | | | | Jul | 2276 | 2270 | 2247 | 2197 | 2136 | 2097 | 2 | 113 | 213 | 209 | 184 | 180 | 2483 | 2460 | 2406 | 2320 | 2277 | | | | Aug | 2124 | 2261 | 2238 | 2185 | 2118 | 2076 | 2 | 209 | 209 | 206 | 182 | 176 | 2470 | 2447 | 2391 | 2300 | 2252 | | | | Sep | 1475 | 2258 | 2234 | 2179 | 2108 | 2063 | 2 | 80 | 208 | 206 | 184 | 178 | 2466 | 2442 | 2385 | 2292 | 2241 | | | | Oct | 1400 | 2248 | 2222 | 2164 | 2078 | 2030 | 2 | 207 | 207 | 208 | 187 | 180 | 2455 | 2429 | 2372 | 2265 | 2210 | | | | Nov | 1769 | 2216 | 2189 | 2132 | 2050 | 2002 | 2 | 206 | 206 | 204 | 187 | 179 | 2422 | 2395 | 2336 | 2237 | 2181 | | | | Dec | 1960 | 2204 | 2175 | 2108 | 2031 | 1973 | 2 | 200 | 200 | 198 | 185 | 177 | 2404 | 2375 | 2306 | 2216 | 2150 | | | ^{*} Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant. TABLE VI PEAKING CAPABILITY AND SALES (Flow to Target Regulation) (1,000 kW at plant) | | Estimated | | | | | | | | | | | | | | | | | | |------------|-----------|-------------|-------------|--------------|-------------|-------------|-------------|------------------------------|-------|-------------|-------------|-------------|-------------------|--------------|-------------|-------------|--|--| | | Committed | | | | | | | | | | | | Exp | ected To | otal | | | | | | Sales* | E> | pected | C of E C | Capabilit | у | Exp | Expected Bureau Capability** | | | | | System Capability | | | | | | | 2002 | 2 | | <u>120%</u> | <u>Basic</u> | 80% | | | 120% | Basic | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | | | | | ۸۰۰۰ | 2422 | | 2141 | 2420 | 2426 | | | 100 | 101 | 100 | | | 2224 | 2220 | 2216 | | | | | Aug | 2133 | | | 2139 | 2136 | | | 190 | 181 | 180 | | | 2331 | 2320 | 2316 | | | | | Sep | 1475 | | 2136 | 2131 | 2124 | | | 191 | 181 | 178 | | | 2327 | 2312 | 2302 | | | | | Oct | 1400 | | 2100 | 2090 | 2079 | | | 194 | 183 | 180 | | | 2294 | 2273 | 2259 | | | | | Nov | 1783 | | 2096 | 2081 | 2066 | | | 194 | 183 | 176 | | | 2290 | 2264 | 2242 | | | | | Dec | 1965 | | 2074 | 2057 | 2039 | | | 190 | 181 | 170 | | | 2264 | 2238 | 2209 | | | | | 2003 | 3 | | | | | | | | | | | | | | | | | | | Jan | 2214 | | 2096 | 2076 | 2058 | | | 185 | 178 | 167 | | | 2281 | 2254 | 2225 | | | | | Feb | 1837 | | 2113 | 2090 | 2069 | | | 183
 177 | 164 | | | 2296 | 2267 | 2233 | | | | | 1 00 | 1001 | | 20 | 2000 | 2000 | | | 100 | | | | | 2200 | LLU. | | | | | | | | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | | | | Mar | 1678 | 2181 | 2174 | 2144 | 2111 | 2108 | 192 | 192 | 182 | 163 | 163 | 2373 | 2366 | 2326 | 2274 | 2271 | | | | Apr | 1480 | 2204 | 2192 | 2153 | 2111 | 2106 | 195 | 195 | 190 | 164 | 164 | 2399 | 2387 | 2343 | 2275 | 2270 | | | | May | 1385 | 2228 | 2210 | 2166 | 2114 | 2106 | 201 | 203 | 199 | 174 | 174 | 2429 | 2413 | 2365 | 2288 | 2280 | | | | Jun | 1660 | 2272 | 2248 | 2202 | 2144 | 2102 | 211 | 212 | 207 | 182 | 182 | 2483 | 2460 | 2409 | 2326 | 2284 | | | | Jul | 2276 | 2284 | 2257 | 2206 | 2140 | 2114 | 213 | 213 | 209 | 184 | 180 | 2497 | 2470 | 2415 | 2324 | 2294 | | | | Aug | 2124 | 2275 | 2248 | 2193 | 2122 | 2102 | 209 | 209 | 206 | 182 | 176 | 2484 | 2457 | 2399 | 2304 | 2278 | | | | | 1475 | 2271 | 2243 | 2187 | 2112 | 2079 | 208 | 208 | 206 | 184 | 178 | 2479 | 2451 | 2393 | 2296 | 2257 | | | | Sep
Oct | 1400 | 2261 | 2230 | 2172 | 2081 | 2066 | 207 | 207 | 208 | 187 | 180 | 2468 | 2437 | 2380 | 2268 | 2246 | | | | | | | 2196 | 2172 | | | | | | | | | | | | | | | | Nov | 1769 | 2228 | | | 2053 | 2034 | 206 | 206 | 204 | 187 | 179 | 2434 | 2402 | 2342 | 2240 | 2213 | | | | Dec | 1960 | 2212 | 2183 | 2114 | 2035 | 2005 | 200 | 200 | 198 | 185 | 177 | 2412 | 2383 | 2312 | 2220 | 2182 | | | ^{*} Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ^{**} Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant. TABLE VII ENERGY GENERATION AND SALES (Steady Release Regulation) (Million kWh at plant) | | stimated | | | | | | | | | | | | | | | | | |--------|---|-------------|-------------|--------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------------|-------------|-------------------|--------------|-------------|-------------|--| | | Committed Sales* Expected C of E Generation | | | | | | | | | | ected To | | | | | | | | _ | Sales* | Exp | | C of E G | | n | Exp | | ıreau G | eneratio | <u>n ** </u> | | System Generation | | | | | | 2002 | | | 120% | <u>Basic</u> | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | Aug | 829 | | 867 | 872 | 877 | | | 50 | 44 | 38 | | | 917 | 916 | 915 | | | | Sep | 714 | | 763 | 767 | 769 | | | 48 | 47 | 36 | | | 811 | 814 | 805 | | | | Oct | 722 | | 494 | 520 | 508 | | | 54 | 47 | 35 | | | 548 | 567 | 543 | | | | Nov | 774 | | 590 | 596 | 576 | | | 57 | 46 | 40 | | | 647 | 642 | 616 | | | | Dec | 910 | | 547 | 552 | 550 | | | 59 | 48 | 41 | | | 606 | 600 | 591 | 2003 | | | | | | | | | | | | | | | | | | | Jan | 896 | | 608 | 581 | 578 | | | 58 | 48 | 37 | | | 666 | 629 | 615 | | | | Feb | 850 | | 548 | 528 | 521 | | | 51 | 43 | 32 | | | 599 | 571 | 553 | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | <u>L.D.</u> | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | Mar | 785 | 475 | 500 | 492 | 531 | 538 | 68 | 70 | 48 | 38 | 38 | 543 | 570 | 540 | 569 | 576 | | | Apr | 737 | 528 | 549 | 559 | 632 | 624 | 77 | 77 | 44 | 36 | 36 | 605 | 626 | 603 | 668 | 660 | | | May | 685 | 713 | 725 | 690 | 762 | 754 | 108 | 102 | 47 | 40 | 40 | 821 | 827 | 737 | 802 | 794 | | | Jun | 745 | 829 | 820 | 759 | 790 | 770 | 118 | 122 | 53 | 54 | 54 | 947 | 942 | 812 | 844 | 824 | | | Jul | 829 | 913 | 901 | 844 | 867 | 843 | 143 | 131 | 77 | 52 | 51 | 1056 | 1032 | 921 | 919 | 894 | | | Aug | 835 | 925 | 912 | 837 | 858 | 832 | 99 | 93 | 73 | 51 | 50 | 1024 | 1005 | 910 | 909 | 882 | | | Sep | 713 | 805 | 770 | 703 | 688 | 685 | 95 | 88 | 70 | 49 | 48 | 900 | 858 | 773 | 737 | 733 | | | Oct | 720 | 675 | 626 | 555 | 569 | 571 | 93 | 89 | 69 | 49 | 48 | 768 | 715 | 624 | 618 | 619 | | | Nov | 774 | 594 | 566 | 480 | 502 | 496 | 89 | 85 | 79 | 52 | 45 | 683 | 651 | 559 | 554 | 541 | | | Dec | 884 | 600 | 598 | 570 | 585 | 544 | 91 | 91 | 80 | <u>53</u> | <u>46</u> | 691 | 689 | 650 | 638 | 590 | | | | | | | | | | | | | | | | | | | | | | CY TOT | 9453 | 8213 | 8123 | 7598 | 7883 | 7756 | 1090 | 1057 | 731 | 543 | 525 | 9303 | 9180 | 8329 | 8426 | 8281 | | ^{*} Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant. TABLE VII **ENERGY GENERATION AND SALES (Flow to Target Regulation)** (Million kWh at plant) | E | Estimated | | | | | | | | | | | | | | | | | |--------|-------------|-------------|-------------|--------------|-------------|----------|----------|-------------|---------|-----------|------|-------------|-------------------|--------------|-------------|-------------|--| | C | Committed | | | | | | | | | | | | | ected T | | | | | | Sales* | Exp | ected (| C of E G | eneration | n | Ex | ected Bu | ureau G | eneratio | n ** | | System Generation | | | | | | 2002 | _ | | 120% | <u>Basic</u> | 80% | | | <u>120%</u> | Basic | 80% | | | <u>120%</u> | <u>Basic</u> | <u>80%</u> | Aug | 829 | | 867 | 872 | 877 | | | 50 | 44 | 38 | | | 917 | 916 | 915 | | | | Sep | 714 | | 763 | 767 | 769 | | | 48 | 47 | 36 | | | 811 | 814 | 805 | | | | Oct | 722 | | 494 | 520 | 508 | | | 54 | 47 | 35 | | | 548 | 567 | 543 | | | | Nov | 774 | | 590 | 596 | 576 | | | 57 | 46 | 40 | | | 647 | 642 | 616 | | | | Dec | 910 | | 547 | 552 | 550 | | | 59 | 48 | 41 | | | 606 | 600 | 591 | 2003 | | | | | | | | | | | | | | | | | | | Jan | 896 | | 608 | 581 | 578 | | | 58 | 48 | 37 | | | 666 | 629 | 615 | | | | Feb | 850 | | 548 | 528 | 521 | | | 51 | 43 | 32 | | | 599 | 571 | 553 | <u>U.D.</u> | <u>U.Q.</u> | Med. | <u>L.Q.</u> | L.D. | U.D | . U.Q. | Med. | L.Q. | L.D. | <u>U.D.</u> | <u>U.Q.</u> | Med | <u>L.Q.</u> | <u>L.D.</u> | Mar | 785 | 475 | 500 | 492 | 531 | 538 | 68 | 3 70 | 48 | 38 | 38 | 543 | 570 | 540 | 569 | 576 | | | Apr | 737 | 528 | 544 | 559 | 632 | 624 | 7 | 7 77 | 44 | 36 | 36 | 605 | 621 | 603 | 668 | 660 | | | May | 685 | 623 | 632 | 625 | 729 | 716 | 108 | 3 102 | 47 | 40 | 40 | 731 | 734 | 672 | 769 | 756 | | | Jun | 745 | 655 | 657 | 641 | 729 | 706 | 118 | 3 122 | 53 | 54 | 54 | 773 | 779 | 694 | 783 | 760 | | | Jul | 829 | 898 | 870 | 814 | 872 | 843 | 143 | 3 131 | 77 | 52 | 51 | 1041 | 1001 | 891 | 924 | 894 | | | Aug | 835 | 940 | 912 | 840 | 855 | 824 | 99 | 93 | 73 | 51 | 50 | 1039 | 1005 | 913 | 906 | 874 | | | Sep | 713 | 818 | 780 | 711 | 683 | 687 | 9 | 88 | 70 | 49 | 48 | 913 | 868 | 781 | 732 | 735 | | | Oct | 720 | 686 | 636 | 562 | 566 | 572 | 93 | 89 | 69 | 49 | 48 | 779 | 725 | 631 | 615 | 620 | | | Nov | 774 | 611 | 577 | 486 | 501 | 497 | 89 | 85 | 79 | 52 | 45 | 700 | 662 | 565 | 553 | 542 | | | Dec | 884 | 664 | 598 | 572 | 586 | 545 | 9 | | 80 | <u>53</u> | 46 | 755 | 689 | 652 | 639 | 591 | | | | | <u> </u> | | <u></u> | | <u> </u> | <u>-</u> | <u> </u> | | | | | | | | <u> </u> | | | CY TOT | 9453 | 8054 | 7862 | 7411 | 7783 | 7651 | 1090 | 1057 | 731 | 543 | 525 | 9144 | 8919 | 8142 | 8326 | 8176 | | ^{*} Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant. - **G.** System Storage. If presently anticipated runoff estimates based upon normal precipitation materialize, System storage will total about 44.3 MAF by the close of CY 2002. This year-end storage would be 4.6 MAF less than the 48.9 MAF experienced on December 31, 2001, and 11.0 MAF less than the 1967 to 2001 average. Since the System first filled to normal operating levels in 1967, the lowest end-of-December storage was 40.9 MAF in 1990. The previous lowest storage prior to the 1988-1992 drought was 50.9 MAF in 1981. The end-of-year storages have ranged from a maximum of 60.9 MAF, which occurred in 1975, to the 1990 minimum of 40.9 MAF. Total System storage on December 31, 2003 is presented in *Table VIII*. - **H.** <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 2002, under the Basic Simulation, is shown in *Tables IX and X*. Actual water use data for CY 2001 are included for information and comparison. Under the simulated operations, estimated water use in CY 2003, which will be subject to reappraisal next year, also is shown in *Table IX* for the steady-release Simulations and in *Table X* for the flow-to-target Simulations. Note that project releases are lower for the flow-to-target Simulation since no additional releases are made for T&E bird species. #### VII. TENTATIVE PROJECTION OF OPERATIONS THROUGH MARCH 2009 (Not Completed Until Final Plan is Adopted) ## TABLE VIII ANTICIPATED DECEMBER 31, 2003 STORAGE IN SYSTEM #### STEADY-RELEASE SIMULATIONS | | | Above | Unfilled | Total | | | |----------------|------------|------------------------------|------------|---------|--|--| | Water Supply | Total | Minimum | Carryover | Change | | | | Condition | (12/31/03) | Pools 1/ | Storage 2/ | CY 2003 | | | | | | (Volumes in 1,000 Acre-Feet) | | | | | | Upper Decile | 56,200 | 38,100 | 900 | 10,600 | | | | Upper
Quartile | 53,700 | 35,600 | 3,400 | 8,000 | | | | Median | 48,000 | 29,900 | 9,100 | 3,700 | | | | Lower Quartile | 41,900 | 23,800 | 15,200 | -1,300 | | | | Lower Decile | 38,600 | 20,500 | 18,500 | -4,500 | | | ## FLOW-TO-TARGET SIMULATIONS | | | Above | Unfilled | Total | |----------------|------------|-------------|--------------------|---------| | Water Supply | Total | Minimum | Carryover | Change | | Condition | (12/31/03) | Pools 1/ | Storage 2/ | CY 2003 | | | | (Volumes in | n 1,000 Acre-Feet) | | | Upper Decile | 56,700 | 38,600 | 400 | 11,000 | | Upper Quartile | 54,300 | 36,200 | 2,800 | 8,600 | | Median | 48,500 | 30,400 | 8,600 | 4,100 | | Lower Quartile | 42,100 | 24,000 | 15,000 | -1,100 | | Lower Decile | 38,900 | 20,800 | 18,200 | -4,300 | | | | | | | ^{1/} Net usable storage above 18.1 million-acre-foot System minimum pool level established for power, recreation, irrigation diversions, and other purposes. ^{2/} System base of flood control zone containing 57.1 million acre-feet. TABLE IX MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2001, 2002, AND 2003 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF) Steady-Release Simulations for CY 2001 CY 2002 Calendar Year 2003 Actual Basic Upper Upper Lower Lower Simulation Decile Quartile Median Quartile Decile **Upstream Depletions** (1) Irrigation, Tributary Reservoir 2.0 2.0 Evaporation & Other Uses Tributary Reservoir Storage Change - 0.1 - 0.4 **Total Upstream Depletions** 1.9 1.6 2.7 2.7 2.4 2.1 2.8 1.2 1.2 1.5 System Reservoir Evaporation (2) 2.7 2.1 1.5 1.7 Sioux City Flows Navigation Season Unregulated Flood Inflows Between Gavins Point & Sioux City 0.0 0.0 Navigation Service Requirement 14.6 14.7 16.3 14.9 12.4 12.8 12.8 Supplementary Releases 0.0 -0.4 0.5 0.5 0.2 0.2 **T&E Species** (4) 0.5 Flood Evacuation 0.0 0.0 0.0 0.0 0.0 0.0 (5)0.0 Nonnavigation Season 3.8 3.5 3.4 3.6 3.5 3.4 Flows 3.3 Flood Evacuation Releases (6)0.0 0.0 0.0 0.0 0.0 0.0 0.0 System Storage Change - 0.5 <u>- 4.5</u> 10.4 8.0 <u>3.8</u> <u>- 1.1</u> <u>-4.5</u> 22.5 Total 17.0 34.5 30.6 19.5 15.5 24.6 Project Releases Fort Peck 4.3 4.8 5.5 5.7 5.6 5.8 5.7 Garrison 9.6 11.7 14.8 13.7 14.1 13.5 14.6 Oahe 11.2 14.4 14.1 14.1 13.4 14.9 15.0 Big Bend 10.5 13.9 14.0 14.1 13.3 14.8 14.9 Fort Randall 12.0 14.8 15.2 15.0 14.1 14.9 15.0 **Gavins Point** 13.9 15.8 17.3 16.7 15.4 16.0 16.0 - (1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects. - (2) Net evaporation is shown for 2003. - (3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs. - (4) Increased releases required to maintain navigation release flexibility during the T&E species nesting season. During 2002, releases fell below minimum service support flows because of T&E nesting resulting in a negative value instead of zero. - (5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River. - (6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release. TABLE X MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2001, 2002, AND 2003 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF) Flow-to-Target Simulations for CY 2001 CY 2002 Calendar Year 2003 Actual Basic Upper Upper Lower Lower Simulation Decile Quartile Median Quartile Decile **Upstream Depletions** (1) Irrigation, Tributary Reservoir 2.0 2.0 Evaporation & Other Uses Tributary Reservoir Storage Change - 0.1 - 0.4 **Total Upstream Depletions** 1.9 1.6 2.7 2.7 2.4 2.1 2.8 1.2 1.2 1.5 System Reservoir Evaporation (2) 2.7 2.1 1.5 1.7 Sioux City Flows Navigation Season Unregulated Flood Inflows Between Gavins Point & Sioux City 0.0 0.0 Navigation Service Requirement 14.6 14.7 15.8 14.8 12.4 12.8 12.8 Supplementary Releases 0.0 -0.4 0.0 0.0 0.0 0.0 **T&E Species** (4) 0.0 Flood Evacuation 0.0 0.0 0.0 0.0 0.0 0.0 (5)0.0 Non-navigation Season 3.8 3.5 3.9 3.4 3.8 3.4 Flows 3.7 Flood Evacuation Releases (6)0.0 0.0 0.0 0.0 0.0 0.0 0.0 System Storage Change - 0.5 <u>- 4.5</u> 10.9 8.5 <u>4.1</u> <u>-1.1</u> <u>-4.3</u> 22.5 Total 17.0 34.5 30.6 19.5 15.5 24.6 Project Releases Fort Peck 4.3 4.8 5.4 5.4 5.7 5.6 5.6 Garrison 9.6 11.7 14.8 13.5 13.9 13.3 14.4 Oahe 11.2 14.4 13.6 13.5 13.0 14.7 14.7 Big Bend 10.5 13.9 13.5 13.5 12.9 14.5 14.6 Fort Randall 12.0 14.8 14.7 14.4 13.6 14.7 14.7 **Gavins Point** 13.9 15.8 16.8 16.1 14.9 15.8 15.8 - (1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects. - (2) Net evaporation is shown for 2003. - (3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs. - (4) Increased releases required to maintain navigation release flexibility during the T&E species nesting season. During 2002, releases fell below minimum service support flows because of T&E nesting resulting in a negative value instead of zero. - (5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River. - (6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release. | Summary of Engineering Data Missouri River Mainstem System | | | | | | |--|---|---|---|--|--| | Item
No. | Subject | Fort Peck Lake | Garrison Dam -
Lake Sakakawea | Oahe Dam -
Lake Oahe | | | 1 | Location of Dam | Near Glasgow, Montana | Near Garrison, ND | Near Pierre, SD | | | 2 | River Mile - 1960 Mileage | Mile 1771.5 | Mile 1389.9 | Mile 1072.3 | | | 3 | Total & incremental drainage | 57,500 | 181,400 (2) 123,900 | 243,490 (1) 62,090 | | | 4 | areas in square miles Approximate length of full | 134, ending near Zortman, MT | 178, ending near Trenton, ND | 231, ending near Bismarck, ND | | | | reservoir (in valley miles) | , , | | | | | 5
6 | Shoreline in miles (3) Average total & incremental | 1520 (elevation 2234)
10,200 | 1340 (elevation 1837.5)
25,600 15,400 | 2250 (elevation 1607.5)
28,900 3,300 | | | 7 | inflow in cfs Max. discharge of record near damsite in cfs | 137,000 (June 1953) | 348,000 (April 1952) | 440,000 (April 1952) | | | 8 | Construction started - calendar yr.
In operation (4) calendar yr. | 1933
1940 | 1946
1955 | 1948
1962 | | | | Dam and Embankment | | | | | | 10 | Top of dam, elevation in feet msl | 2280.5 | 1875 | 1660 | | | 11 | Length of dam in feet | 21,026 (excluding spillway) | 11,300 (including spillway) | 9,300 (excluding spillway) | | | 12 | Damming height in feet (5) | 220 | 180 | 200 | | | 13 | Maximum height in feet (5) | 250.5 | 210 | 245 | | | 14 | Max. base width, total & w/o | 3500, 2700 | 3400, 2050 | 3500, 1500 | | | | berms in feet | 5500, 2700 | 3 100, 2000 | 2200, 1200 | | | 15 | Abutment formations (under dam & embankment) | Bearpaw shale and glacial fill | Fort Union clay shale | Pierre shale | | | 16 | Type of fill | Hydraulic & rolled earth fill | Rolled earth filled | Rolled earth fill & shale berms | | | 17 | Fill quantity, cubic yards | 125,628,000 | 66,500,000 | 55,000,000 & 37,000,000 | | | 18 | Volume of concrete, cubic yards | 1,200,000 | 1,500,000 | 1,045,000 | | | 19 | Date of closure | 24 June 1937 | 15 April 1953 | 3 August 1958 | | | | Spillway Data | | i . | - | | | 20 | Location | Right bank - remote | Left bank - adjacent | Right bank - remote | | | 21 | Crest elevation in feet msl | 2225 | 1825 | 1596.5 | | | 22 | Width (including piers) in feet | 820 gated | 1336 gated | 456 gated | | | 23 | No., size and type of gates | 16 - 40' x 25' vertical lift gates | 28 - 40' x 29' Tainter | 8 - 50' x 23.5' Tainter | | | 24 | Design discharge capacity, cfs | 275,000 at elev 2253.3 | 827,000 at elev 1858.5 | 304,000 at elev 1644.4 | | | 25 | Discharge capacity at maximum | 230,000 | 660,000 | 80,000 | | | | operating pool in cfs | | | | | | | Reservoir Data (6) | | | | | | 26 | Max. operating pool elev. & area | 2250 msl 246,000 acres | 1854 msl 380,000 acres | 1620 msl 374,000 acres | | | 27 | Max. normal op. pool elev. & area | 2246 msl 240,000 acres | | 1617 msl 360,000 acres | | | 28 | Base flood control elev & area | 2234 msl 212,000 acres | 1837.5 msl 307,000 acres | | | | 29 | Min. operating pool elev. & area
Storage allocation & capacity | 2160 msl 90,000 acres | 1775 msl 128,000 acres | 1540 msl 117,000 acres | | | 30 | Exclusive flood control | 2250-2246 975,000 a.f. | 1854-1850 1,489,000 a.f. | 1620-1617 1,102,000 a.f. | | | 31 | Flood control & multiple use | 2246-2234 2,717,000 a.f. | | | | | 32 | Carryover multiple use | 2234-2160 10,785,000 a.f. | | | | | 33 | Permanent | 2160-2030 4,211,000 a.f. | | | | | 34 | Gross | 2250-2030 18,688,000 a.f. | | | | | 35 | Reservoir filling initiated | November 1937 | December 1953 | August 1958 | | | 36 | Initially reached min. operating pool | 27 May 1942 | 7 August 1955 | 3 April 1962 | | | 37 | Estimated annual sediment inflow | | 25,900 a.f. 920 yrs. | | | | | Outlet Works Data | | | | | | 38
39 | Location Number and size of conduits | Right bank
2 - 24' 8" diameter (nos. 3 & 4) | Right Bank
1 - 26' dia. and 2 - 22' dia. | Right Bank
6 - 19.75' dia. upstream, 18.25' | | | | | (| | dia. downstream | | | 40 | Length of conduits in feet (8) | No. 3 - 6,615, No. 4 - 7,240 | 1529 | 3496 to 3659 | | | 41 | No., size, and type of service gates | 1 - 28' dia.
cylindrical gate | 1 - 18' x 24.5' Tainter gate per | 1 - 13' x 22' per conduit, vertical | | | | | 6 ports, 7.6' x 8.5' high (net | conduit for fine regulation | lift, 4 cable suspension and | | | | | opening) in each control shaft | | 2 hydraulic suspension (fine | | | | | | 1.50 | regulation) | | | 42 | Entrance invert elevation (msl) | 2095 | 1672 | 1425 | | | 43 | Avg. discharge capacity per conduit | Elev. 2250 | Elev. 1854 | Elev. 1620 | | | | & total | 22,500 cfs - 45,000 cfs | 30,400 cfs - 98,000 cfs | 18,500 cfs - 111,000 cfs | | | 44 | Present tailwater elevation (ft msl) | 2032-2036 5,000 - 35,000 cfs | 1670-1680 15,000- 60,000 cfs | 1423-1428 20,000-55,000 cfs | | | 45 | Power Facilities and Data | 104 | 161 | 174 | | | 45 | Avg. gross head available in feet (14) | 194
N- 1 2418" 4:- N- 2 2214" 4:- | 161 | 174 | | | 46 | Number and size of conduits | No. 1-24'8" dia., No. 2-22'4" dia. | 5 - 29' dia., 25' penstocks | 7 - 24' dia., imbedded penstocks | | | 47 | Length of conduits in feet (8) | No. 1 - 5,653, No. 2 - 6,355 | 1829 | From 3,280 to 4,005 | | | 48
49 | Surge tanks No., type and speed of turbines | PH#1: 3-40' dia., PH#2: 2-65' dia.
5 Francis, PH#1-2: 128.5 rpm, | 65' dia 2 per penstock
5 Francis, 90 rpm | 70' dia., 2 per penstock
7 Francis, 100 rpm | | | 50 | Discharge cap. at rated head in cfs | 1-164 rpm , PH#2-2: 128.6 rpm
PH#1, units 1&3 170', 2-140' | 150' 41,000 cfs | | | | | | 8,800 cfs, PH#2-4&5 170'-7,200 cfs | | | | | 51 | Generator nameplate rating in kW | 1&3: 43,500; 2: 18,250; 4&5: 40,000 | 3 - 109,250, 2 - 95,000 | 112,290 | | | 52 | Plant capacity in kW | 185,250 | 517,750 | 786,030 | | | 53 | Dependable capacity in kW (9) | 181,000 | 388,000 | 534,000 | | | 54 | Avg. annual energy, million kWh (12) | 1,142 | 2,429 | 2,867 | | | 55
56 | Initial generation, first and last unit Estimated cost September 1999 | July 1943 - June 1961 | January 1956 - October 1960 | April 1962 - June 1963 | | | 50 | completed project (13) | \$158,428,000 | \$305,274,000 | \$346,521,000 | | | | | - | | | | | Summary of Engineering Data Missouri River Mainstem System | | | | | | |---|--|--|---|--|---| | Big Bend Dam -
Lake Sharpe | Fort Randall Dam -
Lake Francis Case | Gavins Point Dam -
Lewis & Clark Lake | Total | Item
No. | Remarks | | 21 miles upstream Chamberlain, SI
Mile 987.4
249,330 (1) 5,8 | Mile 880.0 | Near Yankton, SD
Mile 811.1
279,480 (1) 16,000 | | 1
2
3 | (1) Includes 4,280 square miles of non-contributing areas. | | 80, ending near Pierre, SD | 107, ending at Big Bend Dam | 25, ending near Niobrara, NE | 755 miles | 4 | (2) Includes 1,350 square miles of non-contributing | | 200 (elevation 1420)
28,900 | 540 (elevation 1350)
30,000 1,100 | 90 (elevation 1204.5)
32,000 2,000 | 5,940 miles | 5
6 | areas. (3) With pool at base of flood control. | | 440,000 (April 1952) | 447,000 (April 1952) | 480,000 (April 1952) | | 7 | (4) Storage first available for regulation of flows.(5) Damming height is height | | 1959
1964 | 1946
1953 | 1952
1955 | | 8
9 | from low water to maximum operating pool. Maximum | | 1440
10,570 (including spillway)
78
95
1200, 700 | 1395
10,700 (including spillway)
140
165
4300, 1250 | 1234
8,700 (including spillway)
45
74
850, 450 | 71,596
863 feet | 10
11
12
13
14 | height is from average
streambed to top of dam. (6) Based on latest available
storage data. (7) River regulation is attained
by flows over low-crested
spillway and through | | Pierre shale & Niobrara chalk | Niobrara chalk | Niobrara chalk & Carlile shale | | 15 | turbines. (8) Length from upstream face | | Rolled earth, shale, chalk fill
17,000,000
540,000
24 July 1963 | Rolled earth fill & chalk berms
28,000,000 & 22,000,000
961,000
20 July 1952 | Rolled earth & chalk fill
7,000,000
308,000
31 July 1955 | 358,128,000 cu. yds
5,554,000 cu. yds. | 16
17
18
19 | of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985). | | Left bank - adjacent
1385
376 gated
8 - 40' x 38' Tainter
390,000 at elev 1433.6
270,000 | Left bank - adjacent
1346
1000 gated
21 - 40' x 29' Tainter
620,000 at elev 1379.3
508,000 | Right bank - adjacent
1180
664 gated
14 - 40' x 30' Tainter
584,000 at elev 1221.4
345,000 | | 20
21
22
23
24
25 | (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2001 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract | | 1422 msl 60,000 acr
1420 msl 57,000 acr | es 1375 msl 102,000 acres
es 1365 msl 95,000 acres
es 1350 msl 77,000 acres
es 1320 msl 38,000 acres | 1208 msl 28,000 acres
1204.5 msl 24,000 acres | 1,147,000 acres
989,000 acres | 26
27
28
29 | Report Fiscal Year 1999.
(14) Based on Study 8-83-1985 | | 1422-1420 117,000 a
1420-1345 1,682,000 a | f. 1375-1365 985,000 a.f.
f. 1365-1350 1,309,000 a.f.
1350-1320 1,607,000 a.f.
f. 1375-1240 1,517,000 a.f.
January 1953
24 November 1953
s. 18,300 a.f. 250 yrs. | 1208-1204.5 90,000 a.f.
1204.5-1160 321,000 a.f.
1210-1160 470,000 a.f.
August 1955
22 December 1955 | 11,656,000 a.f.
38,983,000 a.f.
18,084,000 a.f. | 30
31
32
33
34
35
36
37 | | | None (7) | Left Bank
4 - 22' diameter | None (7) | | 38
39 | | | | 1013
2 - 11' x 23' per conduit, vertical
lift, cable suspension | | | 40
41 | | | 1385 (11) | 1229
Elev 1375 | 1180 (11) | | 42
43 | | | 1351-1355(10) 25,000-100,000 c | 32,000 cfs - 128,000 cfs
5,000-60,000 cfs | | | 44 | | | 70
None: direct intake
None
8 Fixed blade, 81.8 rpm | 117
8 - 28' dia., 22' penstocks
1,074
59' dia, 2 per alternate penstock
8 Francis, 85.7 rpm | 48
None: direct intake
None
3 Kaplan, 75 rpm | 764 feet
55,083
36 units | 45
46
47
48
49 | | | 67' 103,000 6 | fs 112' 44,500 cfs | 48' 36,000 cfs | | 50 | | | 3 - 67,276, 5 - 58,500
494,320
497,000
1,041
October 1964 - July 1966 | 40,000
320,000
293,000
1,843
March 1954 - January 1956 | 44,100
132,300
74,000
754
September 1956 - January 1957 | 2,435,650 kw
1,967,000 kw
10,077 million kWh
July 1943 - July 1966 | | Corps of Engineers, U.S. Army
Compiled by
Northwestern Division | | \$107,498,000 | \$199,066,000 | \$49,617,000 | \$1,166,404,000 | 56 | Missouri River Region
May 2001 | | Summary of Engineering Data Missouri River Main Stem System | | | | | |---|---|---|---|--| | Big Bend Dam -
Lake Sharpe | Fort Randall Dam -
Lake Francis Case | Gavins Point Dam -
Lewis & Clark Lake | Total | Item Remarks No. | | 21 miles upstream Chamberlain, SD
Mile 987.4
249,330 (1) 5,840 | Near Lake Andes, SD
Mile 880.0
263,480 (1) 14,150 | Near Yankton, SD
Mile 811.1
279,480 (1) 16,000 | | 1 (1) Includes 4,280 square 2 miles of non-contributing 3 areas. | | 80, ending near Pierre, SD | 107, ending at Big Bend Dam | 25, ending near Niobrara, NE | 755 miles | (2) Includes 1,350 square miles of non-contributing areas. | | 200 (elevation 1420)
28,900 | 540 (elevation 1350)
30,000 1,100 | 90 (elevation 1204.5)
32,000 2,000 | 5,940 miles | 5 (3) With pool at base of flood control. | | 440,000 (April 1952) | 447,000 (April 1952) | 480,000 (April 1952) | | (4) Storage first available for regulation of flows. (5) Damming height is height | | 1959
1964 | 1946
1953 | 1952
1955 | | from low water to maximum operating pool. Maximum | | 1440
10,570 (including spillway)
78
95
1200, 700 | 1395
10,700 (including spillway)
140
165
4300, 1250 | 1234
8,700 (including spillway)
45
74
850, 450 | 71,596
863 feet | height is from average
streambed to top of dam. 11 (6) Based on latest available
storage data. 13 (7) River regulation is attained
by flows over low-crested
spillway and through | | Pierre shale & Niobrara chalk | Niobrara chalk | Niobrara chalk & Carlile shale | | turbines. (8) Length from upstream face | | Rolled earth, shale, chalk fill
17,000,000
540,000
24 July 1963 | Rolled earth fill & chalk berms
28,000,000 & 22,000,000
961,000
20 July 1952 | Rolled earth & chalk fill
7,000,000
308,000
31 July 1955 | 358,128,000 cu.
yds
5,554,000 cu. yds. | 16 of outlet or to spiral case. 17 (9) Based on 8th year (1961) 18 of drought drawdown 19 (From study 8-83-1985). | | Left bank - adjacent
1385
376 gated
8 - 40' x 38' Tainter
390,000 at elev 1433.6
270,000 | Left bank - adjacent
1346
1000 gated
21 - 40' x 29' Tainter
620,000 at elev 1379.3
508,000 | Right bank - adjacent
1180
664 gated
14 - 40' x 30' Tainter
584,000 at elev 1221.4
345,000 | | (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2001 Average (13) Source: Annual Report on Civil Works Activities of th Corps of Engineers. Extrac | | 1423 msl 61,000 acre:
1422 msl 60,000 acre:
1420 msl 57,000 acre:
1415 msl 51,000 acre: | 1365 msl 95,000 acres
1350 msl 77,000 acres | 1208 msl 28,000 acres
1204.5 msl 24,000 acres | 1,147,000 acres
989,000 acres | Report Fiscal Year 1999. 26 (14) Based on Study 8-83-1985 27 28 29 | | 1422-1420 117,000 a.f
1420-1345 1,682,000 a.f
1423-1345 1,859,000 a.f
November 1963
25 March 1964 | | 1208-1204.5 90,000 a.f.
1204.5-1160 321,000 a.f. | 11,656,000 a.f.
38,983,000 a.f.
18,084,000 a.f. | 30
31
32
33
34
35
36
37 | | None (7) | Left Bank
4 - 22' diameter | None (7) | | 38
39 | | None (7) | 1013 2 - 11' x 23' per conduit, vertical lift, cable suspension | None (7) | | 40 41 | | 1385 (11) | 1229
Elev 1375 | 1180 (11) | | 42
43 | | 1351-1355(10) 25,000-100,000 cfs | 32,000 cfs - 128,000 cfs
1228-1239 5,000-60,000 cfs | 1155-1163 15,000-60,000 cfs | | 44 | | 70
None: direct intake | 117
8 - 28' dia., 22' penstocks
1,074 | 48
None: direct intake | 764 feet
55,083 | 45
46
47 | | None
8 Fixed blade, 81.8 rpm | 59' dia, 2 per alternate penstock
8 Francis, 85.7 rpm | None
3 Kaplan, 75 rpm | 36 units | 48
49 | | 67' 103,000 cf | 112' 44,500 cfs | 48' 36,000 cfs | | 50 | | 3 - 67,276, 5 - 58,500
494,320
497,000
1,041
October 1964 - July 1966 | 40,000
320,000
293,000
1,843
March 1954 - January 1956 | 44,100
132,300
74,000
754
September 1956 - January 1957 | 2,435,650 kw
1,967,000 kw
10,077 million kWh
July 1943 - July 1966 | 51
52
53 Corps of Engineers, U.S. Army
54 Compiled by
55 Northwestern Division | | \$107,498,000 | \$199,066,000 | \$49,617,000 | \$1,166,404,000 | 56 Missouri River Region
May 2001 | ## Reservoir Release and Unregulated Flow 2003 STUDY NO 1 | TIPE OF I | 31001 14.20.43 | | | | | | | | | | |-----------|----------------|------|--------|----|------|----|--------|----|-----------|--| | | | | VALUES | IN | 1000 | AF | EXCEPT | AS | INDICATED | | | | 2.1 7000 0.0 | 2002 | | | | | | | | | | DAIL OF BIOD | 1 05/10/ | · · | | | | | | 2002 20 | | | | |--|---------------------|--------------------------|---------------|--------------|--------------|-------------|-------------|------------------|----------------------|---------------|-------| | TIME OF STUD | Y 14:26: | 43 | | | | 1121111 | C TN 10 | 00 812 123 | XCEPT AS | TNDTC | a mra | | 31Л | UL02 | | 200 | 2 | | VALUE | S IN 10 | OU AF E. | KCEPT AS | 2 INDICA | ATE | | | INI-SUM | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 3 ONOV | 31DEC | 31JAN | 28FEB | | | PODT DECK | | | | | | | | | | | | | NAT INFLOW | 2425 | 300 | 320 | 400 | 195 | 91 | 104 | 335 | 315 | 365 | | | FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER | -480 | -37 | -138 | -76 | -12 | -6 | -6 | - 72 | -84 | -49 | | | EVAPORATION
MOD INFLOW | 355
2550 | 72
265 | 90
368 | 79
397 | 36
171 | 17 | 19
91 | 366 | 300 | 414 | | | RELEASE | 3425 | 553 | 417 | 309 | 150 | 69 | 111 | 615 | 646 | 555 | | | STOR CHANGE | -875 | -288 | -49 | 88 | 21 | 10 | -20 | -249 | -247 | -141 | | | STORAGE | 12247 | 11959 | 11910 | 11997 | 12019 | 12029 | 12009 | 11760 | 11513 | 11372 | | | DISCH KCFS | 8.6 | 9.0 | 7.0 | 5.0 | 5.0 | 5.0 | 7.0 | 10.0 | 10.5 | 10.0 | | | POWER | | | | | | | | | | | | | POWER
AVE POWER M
PEAK POW MW
ENERGY GWH | W | 116 | 90 | 65 | 65 | 64 | 90 | 128 | 133 | 126 | | | ENERGY GWH | 528.7 | 86.0 | 64.6 | 48.0 | 23.3 | 10.8 | 17.3 | 95.0 | 99.0 | 84.7 | | | | | | | | | | | | | | | | GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER | 2610 | 400 | 400 | 525 | 205 | 96 | 100 | 255 | 260 | 260 | | | DEPLETION | -83 | 32 | -94 | 60 | -51 | -24 | -27 | -18 | 7 | 32 | | | CHAN STOR | -15 | - 4 | 21 | 20 | | 0 | -21 | -31 | - 5 | 5 | | | EVAPORATION
PEG INFLOW | 419
5684 | 831 | 853
T08 | 701 | 364 | 170 | 205 | 48 | 902 | 000 | | | RELEASE | 8224 | 1291 | 1160 | 857 | 415 | 222 | 301 | 1230 | 1414 | 1333 | | | STOR CHANGE | -2539 | -461 | -337 | -155 | -51 | -52 | -97 | -421 | -521 | -444 | | | STORAGE
FLEV FTMSI. | 16236 | 19775 | 15438 | 15283 | 15232 | 15180 | 15083 | 14662 | 14141 | 13697 | | | DISCH KCFS | 20.8 | 21.0 | 19.5 | 13.9 | 13.9 | 16.0 | 19.0 | 20.0 | 23.0 | 24.0 | | | POWER | | 250 | | | | | | | | | | | AVE POWER M | w | 354 | 230
351 | 164 | 164 | 188 | 222 | 232 | 263 | 271 | | | POWER
AVE POWER M
PEAK POW MW
ENERGY GWH | 1156.9 | 186.0 | 165.7 | 122.1 | 58.9 | 31.5 | 42.6 | 172.5 | 195.6 | 182.0 | | | ONTE | | | | | | | | | | | | | NAT INFLOW | 340 | 3.5 | 80 | 60 | 33 | 15 | 17 | | 10 | 90 | | | DEPLETION | 164 | 83 | 21 | -6 | 3 | 1 | í | 13 | 18 | 30 | | | CHAN STOR | -16 | -1 | 7 | 27 | 0 | -10 | -15 | -5 | -15 | -5 | | | REG INFLOW | 8020 | 1167 | 1134 | 869 | 3/
408 | 209 | 19
284 | 1170 | 1392 | 1388 | | | RELEASE | 7902 | 1778 | 1466 | 666 | 710 | 333 | 201 | 931 | 935 | 882 | | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER M | 118 | -611 | -332
13247 | 203 | -302 | -123 | 13107 | 239 | 457 | 506 | | | ELEV FTMSL | 1590.8 | 1588.3 | 1586.9 | 1587.7 | 1586.4 | 1585.9 | 1586.3 | 1587.3 | 1589.2 | 1591.2 | | | DISCH KCFS | 27.2 | 28.9 | 24.6 | 10.8 | 23.9 | 24.0 | 12.7 | 15.1 | 15.2 | 15.9 | | | AVE POWER M | W | 338 | 285 | 126 | 275 | 275 | 146 | 175 | 177 | 107 | | | PEAK POW MW | • | 612 | 605 | 609 | 603 | 600 | 602 | 607 | 617 | 627 | | | POWER AVE POWER M PEAK POW MW ENERGY GWH | 1110.6 | 251.2 | 205.1 | 93.5 | 99.0 | 46.2 | 28.0 | 130.0 | 131.8 | 125.7 | | | | | | | | | | | | | | | | EVAPORATION | 97 | 20 | 25 | 22 | 10 | 5 | 5 | 11 | | | | | REG INFLOW | 7805 | 1758 | 1441 | 645 | 700 | 328 | 196 | 919 | 935 | 882 | | | STORAGE | 1668 | 1682 | 1682 | 1682 | 1682 | 1682 | 1682 | 1682 | 1682 | 1682 | | | ELEV FTMSL | 1419.8 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 26.5 | 28.4 | 24.2 | 10.5 | 23.5 | 23.6 | 12.4 | 15.0 | 15.2 | 15.9 | | | AVE POWER M | W | 133 | 115 | 53 | 118 | 118 | 62 | 75 | 75 | 76 | | | POWER AVE POWER M PEAK POW MW ENERGY GWH | 457 0 | 509 | 523 | 538 | 538 | 538 | 538 | 538 | 538 | 529 | | | IND IDNAMA | 457.6 | 98.6 | 82./ | 39.5 | 42.4 | 19.9 | 12.0 | 55.8 | 55.7 | 51.2 | | | FORT RANDAL | LL | | | | _ | _ | | | | | | | DEPLETION | 34 | 15 | 30 | 10 | 5 | 2 | 3 | 10 | 20 | 50 | | | EVAPORATION | 104 | 25 | 3 Í | 22 | 8 | 4 | 4 | 10 | 3 | 3 | | | REG INFLOW | 7806 | 1734 | 1434 | 625 | 694 | 326 | 195 | 916 | 952 | 929 | | | STOR CHANGE | -448 | -22 | -308 | -945 | 694 | 326 | 196 | 713 | 701 | 555 | | | STORAGE | 3572 | 3550 | 3242 | 2297 | 2297 | 2297 | 2296 | 2499 | 2750 | 3124 | | | FORT RANDAI
NAT INFLOW
DEPLETION
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FIMSL
DISCH KCFS | 1355.5 | 1355.2 | 1351.5 | 1337.5 | 1337.5 | 1337.5 | 1337.5 | 1341.0 | 1344.8 | 1350.0 | | | POWER | 26.3 | 28.6 | 29.3 | 25.5 | 23.3 | 23.5 | 12.4 | 11.6 | 11.4 | 10.0 | | | AVE POWER MV | | 240 | 242 | 196 | 169 | | | 86 | 87 | 80 | | | PEAK POW MW
ENERGY GWH | | 355
178.8 | | | | | | | | 338 | | | | | 1,0.0 | 1/4.4 | 140.0 | 60.7 | 28.5 | 17.3 | 63.9 | 65.0 | 53.6 | | | GAVINS POIN | NT | 3.0 | | 100 | | | | | _ | _ | | | DEPLETION | 650
28 | 10 | 75
-5 | 100 | 60
5 | 28
2 | 32
3 | 100
10 | 100
1 | 125 | | | CHAN STOR | 30 | -4 | -1 | 7 | 4 | 0
2 | | 1 | 0 | 3 | | | EVAPORATION | 36 | 1765 | 9 | 8 | _ 4 | . 2 | 2
244 | 4 | | | | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE | 8852 | 1765
1734 | 1811
1785 | 1666
1666 | 750
750 | 350 | 744 | 200 | 900 | 683
722 | | | STOR CHANGE | 18 | 31 | 26 | 2000 | .50 | 230 | 277 | 800 | 800 | -39 | | | STOR CHANGE
STORAGE
ELEV FTMSL | 18
340
1205.3 | 371 | 397 | 397 | 397 | 397 | 397 | 397 | 397 | 358 | | | DISCH KCFS | 25.5 | 28.2 | 30.0 | 27.1 | 25.2 | 25.2 | 1207.5 | 1207.5 | 1207.5
13 n | 1206.0 | | | POWER | ,
, | | | | | | | | | | | | POWER AVE POWER MV PEAK POW MW | 4 | 96
115 | 103
117 | 95
117 | 88
117 | | 55
117 | 46
78
34.4 | 46 | 46 | | | PEAK POW MW
ENERGY GWH | 372.5 | 71.2 | 74.0 | 70.6 | 31.8 | 14.9 | 117
10.5 | 34.4 | 78
34.4 | 76
30.8 | | | GAVINS POIN | | | | • | | | | | | 23.0 | | | | | JX CITY-
70 | 80 | 70 | 38 | 18 | 20 | 45 | 35 | 85 | | | DEPLETION | 460
109 | 33 | 21 | 70
9 | 5 | 2 | | | 12 | 13 | | | REGULATED FLC
KAF | W AT SIC | OUX CITY
1771
28.8 | | | | | | | | | | | KCFS | 7403 | 28.8 | 31.0 | 28.1 | 782
26.3 | 365
26.3 | | 834
13.6 | 823
13.4 | 794
14.3 | | | | | | | | | -0.5 | 20.5 | 13.0 | 13.4 | 14.3 | | | TOTAL
NAT INFLOW | 6645 | 865 | 985 | 1165 | 535 | 250 | 285 | 745 | 740 | 1075 | | | DEPLETION | -228 | 136 | -188 | -10 | -50 | | -26
-26 | -53 | 740
-43 | 1075
29 | | | CHAN STOR
EVAPORATION |
-8
1274 | - 9
286 | 26 | - ' | 126 | -10 | 1.4 | -35 | -19 | 3 | | | STORAGE | 48254 | 286
46917 | 356
45916 | 305
45106 | 136
44775 | 63
44610 | 72
44574 | 157
44347 | 44287 | 44542 | | | SYSTEM POWER | ! | | | | | | | | | | | | AVE POWER MW
PEAK POW MW | | 1172
2139 | 1065
2131 | 699
2090 | 878
2084 | 903 | 665 | 741 | 781 | 786 | | | ENERGY GWH | | 871.9 | 766.5 | 519.8 | 316.2 | 151.8 | 127.6 | 205/
551.6 | 781
2076
581.4 | 2090
528.1 | | | DAILY GWH | | 28.1 | 25.5 | 16.8 | 21.1 | 21.7 | 16.0 | 17.8 | | 18.9 | | | | TNT - CITM | ייינות ב | 30000 | 2100 | 1 535011 | | | | | | | INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB 2003 IUDI NO 1 2 VALUES IN 1000 AF EXCEPT AS INDICATED 31JUL02 2002 INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB -FORT PECK --NAT INFLOW DEPLETION 480 234 -37 14 257 109 -17 125 402 438 -105 68 421 -82 60 502 335 167 -39 54 345 -20 8 137 -127 32 497 -682 -150 -105 EVAPORATION MOD INFLOW RELEASE 242 3350 120 528 769 543 127 10 12358 3720 553 417 162 95 76 44 615 117--370 12247 -209 12038 12043 STOR CHANGE -241 -123 STORAGE ELEV FTMSL 12348 12358 12241 2220.3 2220.4 2219.7 5.5 8.0 10.0 12304 12210 12000 2218.4 2219.8 2218.6 8.6 9.0 2218.6 2219.6 2220.1 7.0 5.5 5.5 DISCH KCFS 12.5 12.0 POWER AVE POWER MW PEAK POW MW 90 194 64.7 71 196 116 70 103 160 153 196 25.4 194 119.2 196 196 193 ENERGY GWH 578.4 86.1 52.3 11.9 19.9 96.0 102.9 --GARRISON-NAT INFLOW 131 -17 -26 3132 480 630 57 246 -31 115 -14 432 80 -35 287 DEPLETION -54 21 101 -12 -21 37 12 38 CHAN STOR EVAPORATION 16 71 853 864 0 17 422 -26 -4 65 5 8 197 81 6449 8370 863 1291 890 1190 1043 1476 -433 14638 REG INFLOW 239 876 1066 RELEASE 1230 -354 15071 418 195 317 STOR CHANGE -1921 -428 -300 5507 -11 15497 4 15501 15503 -78 15425 -323 STORAGE ELEV FTMSL DISCH KCFS 16236 15808 14315 1831.1 1829.6 1828.5 14.1 1828.5 14.1 1828.2 1828.5 1828.5 20.8 21.0 20.0 14.1 20.0 24.0 25.0 POWER AVE POWER MW PEAK POW MW 250 236 351 170.1 166 351 123.6 166 235 286 354 1185.1 186.0 351 351 350 347 342 338 ENERGY GWH 59.8 45.2 174.1 206.4 --OAHE--NAT INFLOW 39 3 0 72 21 18 108 164 -20 251 -6 29 DEPLETION 83 21 107 1 -29 13 18 30 CHAN STOR EVAPORATION 0 33 1184 -1 57 5 71 -19 -5 15 440 683 -243 13506 62 909 251 57 8343 1192 7590 1753 753 -561 14191 13630 1590.8 1588.5 27.2 28.5 REG INFLOW RELEASE 1199 1428 205 300 1451 1462 319 -114 13392 900 284 13787 912 539 563 189 STOR CHANGE -228 13402 346 13748 617 STORAGE ELEV FTMSL DISCH KCFS 13503 14327 14944 1587.5 24.0 1587.9 1587.5 1589.0 11.9 14.6 14.8 15.2 POWER AVE POWER MW 107 616 79.5 267 611 333 278 266 PEAK POW MW 608 44.7 611 26.6 617 627 ENERGY GWH 1073.9 247.8 200.3 96.0 127.1 129.9 -- BIG BEND--66 7525 7511 1668 EVAPORATION 16 547 547 15 19 2 317 317 2 187 187 9 891 1409 1409 1682 1738 1724 REG INFLOW 679 912 912 1682 420.0 845 RELEASE 891 1682 1420.0 1 679 845 1682 STORAGE 1682 20.0 1682 120.0 1682 420.0 1682 1420.0 1682 ELEV FTMSL DISCH KCFS 1419.8 1420.0 26.5 28.0 1420.0 23.7 8.9 22.8 22.8 11.8 14.5 14.8 POWER AVE POWER MW PEAK POW MW ENERGY GWH 131 60 73 73 523 80.9 538 538 19.2 538 11.4 509 538 538 538 529 441.2 97.5 33.5 41.2 54.1 54.3 49.0 FORT RANDALL NAT INFLOW 192 36 15 19 36 7 12 6 3 3 12 24 3 60 DEPLETION EVAPORATION 34 72 1 16 23 1415 1724 318 318 318 679 679 1726 1748 -22 REG INFLOW RELEASE 7588 534 1478 189 893 933 902 8036 189 690 203 2297 137.5 22.8 STOR CHANGE -448 -309 3241 -944 2297 250 STORAGE ELEV FTMSL DISCH KCFS 374 3572 3550 2297 2297 2500 2750 1355.5 1355.2 1337.5 1337.5 1351.5 44.8 350.0 26.3 28.4 29.0 11.9 11.2 11.1 9.5 POWER AVE POWER MW PEAK POW MW 239 185 283 137.6 165 284 59.4 240 166 85 76 343 172.7 284 16.7 284 300 317 338 ENERGY GWH 768.4 178.0 27.8 --GAVINS POINT-NAT INFLOW DEPLETION 72 5 2 34 2 0 90 -5 36 120 38 120 150 28 31 10 2 10 3 20 1 CHAN STOR EVAPORATION -4 5 -1 7 3 24 8795 8777 18 1765 1734 31 REG INFLOW 1811 349 349 244 798 802 802 681 720 RELEASE 747 1785 1599 244 STOR CHANGE 26 397 -39 340 1205.3 25.5 STORAGE 371 397 397 397 397 397 397 358 1206.5 28.2 ELEV FTMSL DISCH KCFS 1207.5 1207.5 1207.5 25.1 1207.5 25.1 1207.5 207.5 207.5 206.0 30.0 26.0 15.4 13.0 POWER AVE POWER MW 96 103 46 78 46 78 46 PEAK POW MW 115 71.2 117 74.0 117 117 31.7 117 117 ENERGY GWH 369.4 14.8 10.5 34.3 --GAVINS POINT SIOUX CITY-NAT INFLOW DEPLETION 552 109 84 96 21 84 9 45 5 21 2 24 3 54 11 42 12 102 33 13 AT SIOUX CITY 9220 1785 REGULATED FLOW AT KAF KCFS 1785 29.0 1860 1674 787 841 13.7 809 27.2 26.4 26.4 16.7 13.5 14.6 --TOTAL-NAT INFLOW 1182 -115 24 269 46272 7974 1038 1398 642 -55 300 342 -29 -34 29 894 888 1290 -267 -32 943 DEPLETION 203 -102 -19 120 -19 46 -25 -104 -45 CHAN STOR EVAPORATION STORAGE -21 -9 215 0 25 4 231 45831 48254 47080 STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH 45687 45619 45662 45794 46300 1059 2136 762.7 871 2097 313.5 20.9 871 2094 146.3 20.9 1165 664 2100 678 736 817 815 2141 866.7 2074 547.4 17.7 2096 130.2 2096 607.6 2113 547.6 4416.4 28.0 25.4 16.3 19.6 19.6 INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB STUDY NO 3 2003 2003 | TIME OF STUD | 7 13:11: | 09 | | | | 3757 1112 | C IN 10 | 00 85 5 | verne v | S INDICA | AMED. | |---|--|-------------------------|----------------------|-------------------------|-------------------------|-----------------------------|--------------------|-------------------------|------------------|----------------------|-------| | 31.50 | JL02
INI-SUM | 31AUG | 200
30SEP | | 15NOV | | | | | | TIED | | FORT PECK | | | | | | | | | | 292 | | | DEPLETION
EVAPORATION
MOD INFLOW | 1940
-302
439
1803
3128
-1325 | 90
164 | 112
234 | 98
274 | 44
137 | 73
-12
21
64
56 | 24
73 | 268
-83
51
300 | -19
271 | | | | RELEASE
STOR CHANGE | 3128
-1325 | 553
-389 | 387
-153 | 249
26 | 120
16 | 56
8 | 95
-22 | 584
-284 | 584 | | | | STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 2219.8
8.6 | 2217.6 | 2216.7
6.5 | 2216.9 | 2217.0 | 2217.0
4.0 | 2216.9
6.0 | 11449
2215.2
9.5 | 2213.4
9.5 | 10922
2212.1 | | | POWER
AVE POWER MV | 1 | 115 | 83 | 52
192 | | 51 | | | | 112 | | | AVE POWER MV
PEAK POW MW
ENERGY GWH | 479.6 | 193
85.9 | 192
59.7 | 192
38.4 | 192
18.6 | 51
192
8.6 | 192
14.7 | 120
190
89.5 | 10, | 103 | | | GARRISON-
NAT INFLOW | 2088 | 320 | 320 | 420 | 164 | 77 | 87 | 204 | 208 | 288 | | | CHAN STOR | -263
-4
523 | 10
-4
109 | -115
26 | 30
25
116 | -69
52 | -32
0 | -37
-21 | -39
-36 | -14 | 3
5 | | | NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE | 4951
8038 | 750
1291
-541 | 713
1160 | 548
791 | 301
383 | 140
179
- 39 | 171
254 | 732
1230 | 806
1445 | 790
1305 | | | STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | -3086
16236 | -541
15695 | -448
15247 | -243
15005 | -81
14923 | 179
-39
14885 | -83
14802 | -498
14304 | -639
13665 | -515
13150 | | | | | | | | | | | 20.0 | 23.5 | 23.5 | | | AVE POWER MV
PEAK POW MW
ENERGY GWH | 1122.6 | 250
353 | 229
348 | 151
346 | 150
345 | 150
345 | 344 | 230
338 | | 262
325 | | | OAHE | 1122.6 | 185.8 | 165.2 | 112.1 | 54.0 | 25.3 | 35.7 | | | | | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW | 272
164 | 28
83 | 64
21 | 48
-6 | 26
3 | 12
1 | 14
1 | 13 | 8
18 | 72
30 | | | EVAPORATION
REG INFLOW | 452
7679 | 95
1141 | 116
1094 | 101
777 | 45
361 | 21
169 | -15
24
227 | -20
51
1145 | -17
1418 | 1347 | | | RELEASE
STOR CHANGE | 8121
-442 | 1803
-663 | 1504
-409 | 701
75 | 728
-367 | 341
-172 | 211
17 | 956
189 | 956
461 | 920
427 | | | ELEV FTMSL
DISCH KCFS | 1590.8
27.2 | 13528
1588.0
29.3 | 1586.3 | 13195
1586.6
11.4 | 12827
1585.0
24.5 | 12655
1584.3
24.6 | 12672
1584.4 | 12861
1585.2 | 13322
1587.2 | 13749
1589.0 | | | POWER
AVE POWER MW
PEAK POW MW | ! | 342 | 291 | 132 | 280
595 | 279 | 151 | 178 | 179 | 193 | | | ENERGY GWH | | 911 | 502 | 604 | 595 | 591
46.9 | 592 | 596
132.1 | 607 | 616 | | | BIG BEND-
EVAPORATION | 121 | 24 | . 31 | 27 | _12 | . 6 | 7 | 14 | | | | | REG INFLOW
RELEASE
STORAGE | 7986
1668 | 1779
1765
1682 | 1473
1473
1682 | 674
674
1682 | 716
716 | 336
336
1682 | 204
204
1682 | 942
942 | 956
956 | 920
920 | | | EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1419.8
26.5 | 1420.0
28.7 | 1420.0
24.7 | 1420.0
11.0 | 1420.0
24.1 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | 1420.0 | | | POWER
AVE POWER MW
PEAK POW MW
ENERGY GWH | | 134 | 117 | 55
538
41.3 | | 121 | 65 | 77 | | 79
529 | | | | | | | | | 20.3 | 12.5 | 57.2 | 56.9 | 53.4 | | | FORT RANDAL NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER | 128 | 24
15 | 24 | 8 | 4 | 2 | 2 | 8 | 16 | 40 | | | EVAPORATION REG INFLOW | 130
7943 | 32
1742 | 39
1451 | 27
647 | 10
707 | 5
332 | 202 | 12
935 | 969 | 957 | | | RELEASE
STOR CHANGE
STORAGE | 8390
-448
3572 | 1764
-22 | 1759
-308 | 1592
-945 | 707
0 | 332
0 | 202 | 732
203 | 719
250 | 583
374 | | | ELEV FTMSL
DISCH KCFS | 1355.5 | 1355.2 | 1351.5 | 1337.5 | 1337.5 | 1337.5 | 1337.5 | 1341.0
11.9 | 1344.8
11.7 | 1350.0
10.5 | | | POWER
AVE POWER MW
PEAK POW MW | | 241
355 | 245
343 | 199 | 172 | 173 | 93 | 88 | 90 | 84 | | | ENERGY GWH | 801.0 | 179.6 | 176.1
| 283
148.0 | | | | 300
65.6 | 317
66.7 | 338
56.3 | | | GAVINS POIN
NAT INFLOW
DEPLETION | | 10 | 60
-5 | 80
2 | | | 26 | 80 | 80 | 100 | | | CHAN STOR
EVAPORATION | 29
44 | - 5
8 | -2
11 | 7
10 | 4
5 | 0
2 | 3
21
2 | 10
1
5 | 0 | 2 | | | REG INFLOW
RELEASE
STOR CHANGE | 8867
8849
18 | 1765
1734
31 | 1811
1785
26 | 1666
1666 | 750
750 | | 243
243 | 798
798 | 799
799 | 685
724 | | | STORAGE
ELEV FTMSL | 340
1205.3 | 371
1206.5 | 397 | 397
1207.5 | 1207.5 | 397
1207.5 | 397
1207.5 | 397
1207.5 | 397
1207.5 | -39
358
1206.0 | | | DISCH KCFS
POWER
AVE POWER MW | 25.5 | 28.2
96 | 30.0
103 | 27.1
95 | 25.2 | 25.2 | 15.3 | 13.0 | 13.0 | 13.0 | | | PEAK POW MW
ENERGY GWH | | 115 | 117
74.0 | 117
70.6 | 88
117
31.8 | 88
117
14.9 | 54
117
10.4 | 46
78
34.3 | 46
78
34.3 | 46
76
30.9 | | | GAVINS POIN' NAT INFLOW | 368 | 56 | 64 | 56 | 30 | 14 | 16 | 36 | 28 | 68 | | | DEPLETION
REGULATED FLOW
KAF | 109
W AT SIC
9108 | 33
UX CITY
1757 | . 21
1828 | 9
1713 | 5
775 | 2
362 | 3
256 | 11
823 | 12
815 | 13
779 | | | KCFS
TOTAL | | 28.6 | 30.7 | 27.9 | | | | 13.4 | 13.3 | 14.0 | | | NAT INFLOW
DEPLETION | 5316
-230 | 692
137 | 788
-161 | 932
-16 | 428
-81 | 200
-38 | 228
-43 | 596
-85 | 592
1 | 860
55 | | | CHAN STOR
EVAPORATION | 3
1710 | -10
358 | 31
444 | 58
379 | 2
168 | 0
78 | -14
89 | -55
193 | -17 | 8 | | | STORAGE
SYSTEM POWER
AVE POWER MW | 48254 | 46684
1179 | 45393
1069 | 44306
683 | 43874
863 | 43671
863 | 43583
626 | 43192
739 | 42952
776 | 42985
776 | | | PEAK POW MW
ENERGY GWH | 4378.9 | 2136
876.9 | 2124
769.4 | 2079
508.4 | 2071
310.6 | 2067
145.0 | 2066
120.1 | 2039
549.7 | 2058
577.5 | 2069
521.3 | | | DAILY GWH | NIT CIM | 28.3 | 25.6 | 16.4 | 20.7 | 20.7 | 15.0 | 17.7 | 18.6 | 18.6 | | INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB | TIME OF ST | JDY 12:13 | • | | | CWCP, S | TEADY R | | 3 AOP UE | PER DEC | CILE RUN | OFF SIM | ULATION | 99001 | 9901 | | AGE
DY NO | 1 | |---|--------------------------|----------------------|------------------------|----------------------|----------------------|----------------------|-------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | 28 | SFEB03 | | 20 | | | VALUE | S IN 1 | 000 AF E | | | | | | 20 | 004 | DI NO | 4 | | FORT PEC | INI-SU | M 15MAI | R 22MA | R 31MAF | R 30APR | 31MAY | 30501 | N 31JUL | 31AUC | 30SEE | 310CT | 15NOV | 22NOV | 7 30NOV | 31DEC | 31JAN | 29FEB | | NAT INFLOW
DEPLETION | 7 960
26 | 8 -31 | | | | | 249:
48: | | | | | | 98
- 9 | | | | 400 | | EVAPORATIO
MOD INFLOW | 901 | 2 351 | | | | | 2002 | 21
2 1034 | 66
486 | 84
400 | 74
508 | 18 | 8
99 | 10 | 39 | | -122
522 | | RELEASE
STOR CHANG
STORAGE | 505
E 395
1187 | 6 172 | 94 | 121 | 430 | 944 | 506
1496 | 5 512 | -37 | 43 | 229 | 94 | 55
44 | 127
-14 | 523
-100 | 553
-106 | 489
33 | | ELEV FTMSI
DISCH KCFS | 2217. | 7 2218.7 | 2219.2 | 2219.9 | 2222.3 | 2227.3 | 15135
2234.7
8.5 | 7 2237.0 | 2236.9 | 2237.0 | 2238.1 | 2238.5 | 16019
2238.7 | 2238.6 | 2238.2 | 2237.7 | | | POWER
AVE POWER | | 77 | | 65 | 65 | 79 | 114 | | | | | 4.0 | 4.0 | | | 9.0
124 | 8.5
117 | | PEAK POW M
ENERGY GWH | | 194
7 27.7 | | | | 203
59.0 | 209
82.4 | | 210
86.8 | 211 | 211 | 212
19.8 | 212
9.3 | 212 | | 211
92.1 | 211
81.4 | | GARRISC | | 9 515 | 240 | 309 | 1376 | 1934 | 3530 | 2647 | 941 | F24 | 650 | 252 | | | | | | | DEPLETION
CHAN STOR | 121
3 | 3 33 | 16 | 20 | | 268
-10 | 919 | 545 | 841
53 | | 652
-3
14 | 260
-98
5 | 121
-46 | | | 348
-116 | 434
-83 | | EVAPORATIO
REG INFLOW
RELEASE | 1773 | 1 724 | | | | 2025 | 3091 | | 74
1237 | 93 | 80
868 | 19
463 | 9
213 | 10
268 | 42
886 | -5
1012 | 5
1011 | | STOR CHANG
STORAGE | 1483
E 289
1431 | 9 248 | 83 | 93 | 534 | 1291
733
16005 | 1428 | 1188 | 1353
-116 | -147 | 1058
-189 | 458
5 | 214
0 | 286
-18 | 1230
-344 | 1476
-463 | 1381
-370 | | ELEV FTMSL
DISCH KCFS | 1824. | 1 1825.0 | 1825.3 | 1825.7 | 1827.7 | | 17668
1836.0
24.0 | 1839.9 | | | 18403
1838.4
17.2 | 18408
1838.5
15.4 | 18408
1838.5
15.4 | 1838.4 | 1837.3 | 17583
1835.8 | | | POWER
AVE POWER :
PEAK POW M | | 184 | 185 | | 221 | 248 | 291 | 287 | 278 | 240 | 216 | 194 | 194 | 18.0
226 | 20.0 | 24.0
297 | 24.0
294 | | ENERGY GWH | | 341
66.2 | 342
31.0 | | 349
159.2 | 357
184.4 | 373
209.2 | | 383
206.5 | 382
172.5 | 380
161.0 | 380
69.7 | 380
32.5 | 380
43.4 | 377
185.9 | 372
220.8 | 369
204.7 | | OAHE-
NAT INFLOW | 3850 | | 261 | 335 | 474 | 347 | 881 | 297 | 123 | 163 | 102 | 109 | 51 | 58 | 22 | 10 | 50 | | DEPLETION
CHAN STOR
EVAPORATION | 570 | 7 41 | 10 | 13 | 45
-13 | 62
-8 | 120
-13 | 138
4 | 90
4 | 23
12 | -7
8 | 2 8 | 1 | 1
-11 | 11
-8 | 15
-17 | 59
25 | | REG INFLOW
RELEASE | N 327
17792
13936 | 2 1054 | 473
197 | 608
229 | 1547
765 | 1568
1238 | 2177
1415 | 1555
1607 | 69
1321 | 86
1197 | 75
1100 | 18
555 | 8
256 | 10
322 | 40
1193 | 1454 | 1415 | | STOR CHANG
STORAGE | E 3857
14944 | 7 672
1 15616 | 276
15892 | 378
16270 | 781
17051 | 330
17381 | 762
18143 | 1687
-132
18012 | 1772
-452
17560 | 1544
-347
17213 | 1063
37
17249 | 511
44
17294 | 237
18
17312 | 205
117
17429 | 1076
117 | 945
509 | 670
745 | | ELEV FTMSL
DISCH KCFS
POWER | 1593.8
15.2 | 3 1596.3
12.8 | 1597.4
14.2 | 1598.7
12.9 | 1601.5
12.9 | 1602.7
20.1 | 1605.2
23.8 | | | 1602.1 | | 1602.4 | | | 17546
1603.2
17.5 | 18056
1605.0
15.4 | 18800
1607.4
11.6 | | AVE POWER I | | 155
652 | 173
657 | 158
664 | 160
679 | 253
685 | 301
699 | 349
696 | 365
688 | 326 | 217 | 216 | 215 | 163 | 221 | 195 | 150 | | ENERGY GWH | 2127.4 | | 29.1 | 34.2 | 115.4 | 188.1 | 216.9 | 259.9 | 271.5 | 682
235.0 | 682
161.8 | 683
77.8 | 684
36.1 | 686
31.4 | 688
164.5 | 697
145.4 | 710
104.4 | | BIG BENI
EVAPORATION
REG INFLOW | 71
71
13865 | | 197 | 229 | 765 | 1000 | | 5 | 15 | 19 | 16 | 4 | 2 | 2 | 9 | | | | RELEASE
STORAGE | 13865
1682 | 381 | 197
1682 | 229
1682 | 765
765
1682 | 1238
1238
1682 | 1415
1415
1682 | 1682
1682
1682 | 1758
1758
1682 | 1526
1526 | 1047
1047 | 507
507 | 235
235 | 203
203 | 1067
1067 | 945
945 | 670
670 | | ELEV FTMSL
DISCH KCFS | 1420.0
15.2 | 1420.0 | | | | | | 1420.0 | | 1682
1420.0
25.6 | 1682
1420.0
17.0 | 1682
1420.0
17.0 | 1682
1420.0
17.0 | 1682
1420.0
12.8 | 1682
1420.0
17.4 | 1682
1420.0
15.4 | 1682
1420.0 | | POWER
AVE POWER N
PEAK POW MW | | 61
51 7 | 66
509 | 60
509 | 60
509 | 94
509 | 111 | 128 | 134 | 122 | 84 | 86 | 85 | 65 | 86 | 75 | 11.6
56 | | ENERGY GWH | 800.1 | 21.9 | 11.1 | 13.0 | 43.4 | 70.1 | 509
80.1 | 509
95.3 | 509
99.5 | 517
87.5 | 538
62.1 | 538
30.8 | 538
14.3 | 538
12.4 | 538
63.8 | 538
55.7 | 529
38.9 | | FORT RANDA
NAT INFLOW
DEPLETION | ւեն
1501
80 | | 89
1 | 114 | 298 | 159 | 224 | 111 | 72 | 92 | 60 | 5 | 2 | 3 | 23 | 10 | 49 | | EVAPORATION
REG INFLOW | 15205 | _ | 285 | 1
343 | 4
1059 | 9
1388 | 12
1627 | 18
6
1769 | 15
19
1796 | 7
24
1587 | 1
19 | 1
4 | 0 2 | 1 2 | 3
8 | 3 | 3 | | RELEASE
STOR CHANGE | | 291 | 151
134 | 343 | 1059 | 1388 | 1627 | 1769 | 1796 | 1731
-144 | 1087
1712
-625 | 507
821
-314 | 236
383
-148 | 204
226
-22 | 1079
713
366 | 952
695 | 716
512 | | STORAGE
ELEV FTMSL
DISCH KCFS | 3124
1350.0
9.5 | | 3549
1355.2
10.9 | | | 3549
1355.2 | | | 3549
1355.2 | 3405 | 2780 | 2467
1340.4 | 2319
1337.9 | 2297 | 2663
1343.5 | 257
2920
1347.2 1 | 204
3124
1350.0 | | POWER
AVE POWER M | W | 78 | 92 | 19.2 | 17.8
151 | 22.6
190 | 27.3 | 28.8
242 | 29.2
245 | 29.1
243 | 27.8
223 | 27.6 | 27.6 | 14.2 | 11.6 | 11.3 | 8.9 | | PEAK POW MW
ENERGY GWH | 1507.2 | 350
28.0 | 355
15.4 | 355
35.1 | 355
108.5 | 355
141.7 | 355
165.6 | 355
179.9 | 355
182.6 | 349
174.8 | 319
165.9 | 209
297
75.1 | 202
285
33.9 | 104
284
19.9 | 87
311
64.7 | 89
328
65.8 | 72
338
50.0 | | GAVINS POI | NT
2252 | 107 | 50 | 64 | 246 | 319 | 281 | 211 | 1.50 | | | | | -515 | | 05.0 | 30.0 | | DEPLETION
CHAN STOR | 114 | 0 | 0
-3 | 0
-16 | 5 | 19
-9 | 24
-9 | 211
39
-3 | 170
10
-1 | 135
-5
0 | 157
2
2 | 60
5
0 | 28
2
0 | 32
3
25 | 95
10
5 | 106
1 | 191 | | EVAPORATION
REG INFLOW
RELEASE | 26
17317
17317 | 387
387 | 198
198 | 391
391 | 1303
1303 | 1679
1679 | 1874 | 1937 | 5
1950 | 7
1865 | 6
1863 | 1
875 | 1
408 | 1
279 | 3
800 | 1
800 | 4
707 | | STOR CHANGE
STORAGE | 358 | 358 | 358 | 358 | 358 | 358 | 1874
358 | 1937
358 | 1937
13
371 | 1839
26
397 | 1863
397 | 875
397 | 408 | 279 | 800 | 800 | 746
-39 | | ELEV FTMSL
DISCH KCFS
POWER |
1206.0
13.0 | 1206.0
13.0 | 1206.0
14.3 | 1206.0
21.9 | 1206.0 3
21.9 | 1206.0 1
27.3 | 206.0 | 1206.0 1
31.5 | 1206.5
31.5 | 1207.5
30.9 | 1207.5
30.3 | 1207.5 1
29.4 | 397
1207.5
29.4 | 397
1207.5 1
17.6 | 397
1207.5 1
13.0 | 397
207.5 1
13.0 | 358
206.0
13.0 | | AVE POWER MY | W | 46
114 | 50
114 | 75
114 | 75
114 | 93
114 | 104
114 | 104 | 105 | 105 | 104 | 102 | 102 | 62 | 46 | 46 | 46 | | ENERGY GWH | 714.9 | 16.4 | 8.4 | 16.3 | 54.2 | 69.2 | 75.2 | 114
77.7 | 115
78.0 | 117
75.5 | 117
77.6 | 117
36.8 | 117
17.2 | 117
11.9 | 78
34.4 | 78
34.4 | 76
31.8 | | GAVINS POIN
NAT INFLOW
DEPLETION | NT - SIOU
3100
241 | JX CITY-
195
6 | 91 | 117 | 1006 | 553 | 318 | 246 | 184 | 127 | 66 | 26 | 12 | 14 | 30 | 12 | 105 | | REGULATED FLO
KAF | OW AT SIG
20176 | OUX CITY
576 | 3
286 | 3
504 | 20
2289 | 34
2198 | 29
2163 | 36
2147 | 33
2088 | 22
1944 | 9 | 5 | 2 | 3 | 11 | 12 | 13 | | KCFS
TOTAL | | 19.4 | 20.6 | 28.2 | 38.5 | 35.7 | 36.4 | 34.9 | 34.0 | 32.7 | 1920
31.2 | 895
30.1 | 418
30.1 | 290
18.3 | 819
13.3 | 800
13.0 | 838
14.6 | | NAT INFLOW
DEPLETION | 34502
2486 | 1885
30 | 879
14 | 1131
18 | 4197
152 | 4916
683 | 7725
1593 | 4731 | 1846 | 1470 | 1568 | 670 | 312 | 357 | 794 | 783 | 1238 | | CHAN STOR
EVAPORATION | 45
1174 | 104 | 8 | -16 | -10 | -28 | -47 | 940
1
78 | 105
3
248 | -179
37
311 | -49
24
270 | -105
14 | -49
0 | -56
-25 | -213
-8 | -235
-21 | -164
9 | | STORAGE
SYSTEM POWER
AVE POWER MW | | 47683
600 | 48269 | 48861 | | | 56536 | 58103 | 57511 | 56942 | | 64
56223 | 30
56137 | 34
56200 | 140
56240 | 56437 | 57010 | | PEAK POW MW
ENERGY GWH | 8181.0 | 2168
216.1 | 630
2172
105.9 | 706
2181
152.5 | 733
2204
527.5 | 958
2223
712.5 | 1152
2259
829.4 | 1227
2270
912.8 | 1243
2261 | 1118
2258 | 907
2248 | 861
2227 | 853
2216 | 731
2216 | 807
2204 | 826
2225 | 735
2233 | | DAILY GWH | THE CON- | 14.4 | 15.1 | 16.9 | 17.6 | 23.0 | 27.6 | 29.4 | 924.9
29.8 | 804.7
26.8 | 675.0
21.8 | 310.0 | 143.3
20.5 | 140.3
17.5 | 600.4
19.4 | | 511.3
17.6 | | | INI-SUM | 1 DMAR | ∠∠MAR | 31MAR | 30APR | 31MAY | NUTO 8 | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN 2 | 29FEB | DATE OF STUDY 09/16/02 | | DATE OF STO | | | | | | | | OP UPPE | R QUART | ILE KUN | OFF SIM | ULATION | 99001 | 9901 | 9901 P | AGE | 1 | |---|--|--------------------------|---------------------|---------------------|-------------------------|------------------------|------------------------|-----------------|--------------------|--------------------|---------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------| | | TIME OF STU | | 56 | | | CP, STE | | | 00 AF E | XCEPT A | SINDIC | ATED | | | | STU | DY NO | 5 | | | 28 | FEB03
INI-SUM | 15MAR | 200
22MAR | | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 20
30NOV | | 31JAN | 29FEB | | | FORT PEC
NAT INFLOW
DEPLETION | K
8901
215 | | | 178
-19 | 739
69 | 1487
291 | | 1130
139 | | 351
-105 | 492
-73 | 195 | 91 | 104 | 321 | 276 | 371 | | | EVAPORATION MOD INFLOW | | | | 196 | 670 | 1196 | | 20
971 | | 81
375 | 72 | -27
33
189 | -12
15
88 | -14
17
101 | -125
38
408 | -150
426 | -107
4 78 | | | RELEASE
STOR CHANG | 5218 | 179 | 69 | 89
107 | 327
343 | 430
766 | 536 | 553
417 | 553
-100 | 322
53 | | 133
56 | 62
26 | 95 | 523
-114 | 553
-127 | 518
-40 | | | STORAGE
ELEV FTMSL | 11877
2217.7 | | | 12217
2219.6 | 12559 | | 14609 | 15027 | 14927 | 14980
2233.9 | 15199 | 15254
2235.2 | 15281
2235.3 | 15286 | 15172 | 15044
2234.2 | 15005 | | | DISCH KCFS
POWER | 12.0 | | | 5.0 | 5.5 | 7.0 | | 9.0 | | 5.4 | 4.5 | 4.5 | 4.5 | 6.0 | 8.5 | 9.0 | 9.0 | | | AVE POWER I
PEAK POW MI
ENERGY GWH | | 77
194
27.7 | 195 | 65
195
13.9 | 71
198
51.4 | 92
202
68.4 | | 122
208
90.8 | 122
208
91.0 | 74
208
53.0 | 61
209
45.4 | 61
209
22.0 | 61
209
10.3 | 82
209
15.7 | 116
209
86.3 | 123
208
91.2 | 122
208
85.2 | | | GARRISON
NAT INFLOW
DEPLETION | N
12901
1206 | | 225
16 | 289
20 | 1250
9 | 1723
310 | 3207
907 | 2405
514 | 764
51 | 522
-121 | 593
-2 | 236
-94 | 110
-44 | 126
-50 | 260
-138 | 316
-120 | 394
-87 | | | CHAN STOR
EVAPORATION
REG INFLOW | 32
N 366
16579 | | 10 | | -5 | -16 | -21 | 22 | 71 | 36
88 | 9
77 | 35 | 16 | -15
18 | - 25
40 | -5 | | | | RELEASE
STOR CHANG | 14619 | 476 | 289
215
74 | 358
277
81 | 1563
1101 | 1828
1291 | 2815
1428 | 2422
1445 | 1196
1414 | 912
1087 | 803
885 | 428
428 | 200
200 | 237
286 | 856
1230 | 984
1476 | 999
1381 | | | STORAGE
STORAGE
ELEV FTMSL | 14315 | | 14601 | 14683 | 462
15145
1827.2 | 537
15681
1829.2 | | 978
18046 | -218
17827 | -175
17653 | -82
17570 | 17570 | 17570 | -48
17522 | -374
17148 | -491
16656 | -382
16275 | | | DISCH KCFS
POWER | 25.0 | | 15.5 | 15.5 | 18.5 | 21.0 | 1834.0
24.0 | 1837.3
23.5 | 1836.6
23.0 | 1836.0
18.3 | 1835.7
14.4 | 1835.7
14.4 | 1835.7
14.4 | 1835.6
18.0 | 1834.3
20.0 | 1832.6
24.0 | 1831.3
24.0 | | | AVE POWER I | | 184
341 | 179
341 | 179
342 | 215
347 | 246
353 | 288
367 | 289
377 | 285
375 | 226
373 | 178
372 | 178
372 | 178
372 | 222
372 | 245
368 | 291
363 | 288
359 | | | ENERGY GWH | 2139.2 | | 30.0 | 38.7 | 154.7 | 183.4 | 207.0 | 215.1 | 212.2 | 162.9 | 132.6 | 64.1 | 29.9 | 42.6 | 182.5 | 216.5 | 200.6 | | | OAHE- | 3200 | 460 | 214 | 276 | 394 | 285 | 749 | 246 | 103 | 135 | 85 | 91 | 42 | 48 | 18 | 5 | 49 | | | DEPLETION
CHAN STOR | 570
6 | 22
41 | 10
2 | 13 | 45
~13 | 62
-11 | 120
-13 | 138
2 | 90
2 | 23
20 | -7
17 | 2
0 | 1 | 1
-16 | 11
-9 | 15
-17 | 25 | | | EVAPORATION
REG INFLOW | 16908 | 955 | 422 | 539 | 1437 | 1503 | 2044 | 21
1534 | 67
1362 | 83
1136 | 72
922 | 32
485 | 15
226 | 17
300 | 38
1190 | 1449 | 1405 | | | RELEASE
STOR CHANGE
STORAGE | 14064
2844
14944 | 562
393
15337 | 108
313
15650 | 265
275 | 858
579 | 1265
238 | 1402
642 | 1655
-122 | 1719
-357 | 1510
-374 | 1019
-97 | 493 | 229
-2 | 204
97 | 1093
97 | 948
500 | 734
670 | | | ELEV FTMSL
DISCH KCFS | | 1595.3 | | 15925
1597.5
14.8 | | 16742
1600.4 | | 17262
1602.3 | | 16531 | 16434
1599.3 | | 16424 | | | | 17788
1604.1 | | | POWER
AVE POWER N | | 227 | 95 | 181 | 14.4
178 | 20.6
255 | 23.6
295 | 26.9
338 | 28.0
349 | 25.4 | 16.6
205 | 16.6 | 16.5 | 12.8 | 17.8 | 15.4 | 12.8 | | | PEAK POW MV
ENERGY GWH | | 647
81.9 | 653
16.0 | 658
39.2 | 669 | 673
190.1 | 685
212.3 | 683
251.5 | 676
259.9 | 315
669
226.9 | 667
152.8 | 205
667
73.9 | 204
667
34.3 | 159
669
30.6 | 671 | 193
680 | 162
692 | | | BIG BENI | | 01.7 | 10.0 | 37.2 | 120.1 | 190.1 | 212.3 | 231.3 | 239.9 | 220.9 | 152.6 | /3.9 | 34.3 | 30.6 | 164.2 | 143.4 | 112.4 | | | EVAPORATION
REG INFLOW | | 562 | 108 | 265 | 858 | 1265 | 1402 | 5
1651 | 15
1704 | 19
1491 | 16
1002 | 7
485 | 3
225 | 4
200 | 9
1084 | 948 | 734 | | | RELEASE
STORAGE | 13986
1682 | 562
1682 | 108
1682 | 265
1682 | 858
1682 | 1265
1682 | 1402
1682 | 1651
1682 | 1704
1682 | 1491
1682 | 1002
1682 | 485
1682 | 225
1682 | 200
1682 | 1084
1682 | 948
1682 | 734
1682 | | | ELEV FTMSL
DISCH KCFS | 1420.0
15.2 | 1420.0
18.9 | 1420.0
7.8 | | | 1420.0
20.6 | 1420.0
23.6 | 1420.0 | | | | | | | | | 1420.0 | | | POWER
AVE POWER N | | 89 | 37 | 69 | 68 | 96 | 110 | 126 | 130 | 119 | 80 | 82 | 82 | 64 | 87 | 75 | 61 | | | PEAK POW MW
ENERGY GWH | 806.7 | 510
31.9 | 509
6.1 | 509
15.0 | 509
48.6 | 509
71.7 | 509
79.4 | 509
93.5 | 509
96.5 | 517
85.5 | 538
59.6 | 538
29.5 | 538
13.7 | 538
12.2 | 538
64.8 | 538
56.0 | 529
42.7 | | | FORT RANDA | LL
1200 | 142 | 66 | 85 | 239 | 150 | 195 | 89 | 65 | . | 2.0 | • | | | | _ | | | | DEPLETION
EVAPORATION | 80 | 1 | 1 | 1 | 4 | 9 | 12 | 18 | 15
19 | 64
7
24 | 38
1
19 | 3
1
7 | 1
0
3 | 1
1
3 | 18
3
8 | 5
3 | 39
3 | | | REG INFLOW
RELEASE | 15019
15019 | 702
295 | 174
157 | 349
349 | 1093
1093 | 1406
1406 | 1585
1585 | 1716
1716 | 1736
1736 | 1525
1669 | 1021
1651 | 480
790 | 223
369 | 198
219 | 1092
726 | 950
713 | 770
546 | | | STOR CHANGE
STORAGE | | 408
3532 | 17
3549 | 3549 | 3549 | 3549 | 3549 | 0
3549 | 0
3549 | -144
3405 | -630
2775 | -310
2465 | -146
2319 | -22
2297 | 366
2663 | 713
237
2900 | 546
224
3124 | | | ELEV FTMSL
DISCH KCFS | 1350.0
9.5 | 1355.0
9.9 | 1355.2 | 1355.2
19.5 | | | | | | | | | | | 1343.5 | 1347.0
11.6 | 1350.0 | | | POWER
AVE POWER M | | 82 | 96 | 165 | 155 | 193 | 224 | 235 | 237 | 234 | 215 | 201 | 195 | 101 | 88 | 91 | 77 | | | PEAK POW MW
ENERGY GWH | 1489.3 | 354
29.7 | 355
16.1 | 355
35.7 | 355
111.9 | 355
143.6 | 355
161.5 | 355
174.6 | 355
176.6 | 349
168.6 | 318
160.1 | 297
72.3 | 285
32.7 |
284
19.4 | 311
65.8 | 327
67.5 | 338
53.3 | | - | -GAVINS POI | NT
1899 | 0.3 | 4.4 | 5.0 | 207 | 0.55 | 02.5 | 4.70 | | | | | | | | | | | | DEPLETION
CHAN STOR | 114 | 93
0
-1 | 44
0
-3 | 56
0
-16 | 207
5
2 | 257
19
-9 | 237
24
-7 | 178
39 | 144
10 | 114
-5 | 132 | 51
5 | 24 | 27
3 | 86
10 | 89
1 | 161 | | | EVAPORATION
REG INFLOW | | 388 | 198 | 389 | 1297 | 1636 | 1791 | -2
2
1851 | -1
5
1864 | 0
7
1781 | 2
6
1777 | 1
3
833 | 0
1 | 24
1 | 3 | 0 | 4 | | | RELEASE
STOR CHANGE | 16775 | 388 | 198 | 389 | 1297 | 1636 | 1791 | 1851 | 1851 | 1755 | 1777 | 833 | 389
389 | 266
266 | 802
802 | 802
802 | 711
750 | | | STORAGE
ELEV FTMSL | 358
1206.0 371
1206.5 | 397 | 397
1207.5 | 397
1207.5 | 397
1207.5 | 397
1207.5 | 397
1207.5 | 397
1207.5 | -39
358 | | | DISCH KCFS
POWER | 13.0 | 13.0 | 14.3 | 21.8 | 21.8 | 26.6 | 30.1 | 30.1 | 30.1 | 29.5 | 28.9 | 28.0 | 28.0 | 16.8 | 13.0 | 13.0 | 13.0 | | | AVE POWER M
PEAK POW MW | | 46
114 | 50
114 | 75
114 | 75
114 | 91
114 | 101
114 | 101
114 | 102
115 | 102
117 | 101
117 | 98
117 | 98
117 | 59
117 | 46
78 | 46
78 | 46
76 | | | ENERGY GWH | 698.3 | 16.4 | 8.4 | 16.2 | 54.0 | 67.5 | 72.8 | 75.2 | 75.6 | 73.1 | 75.1 | 35.3 | 16.5 | 11.4 | 34.5 | 34.4 | 32.0 | | | -GAVINS POI
NAT INFLOW
DEPLETION | NT - SIOU
2500
241 | 181 | 85 | 109 | 811 | 406 | 252 | 199 | 148 | 97 | 53 | 21 | 10 | 11 | 24 | 10 | 84 | | | EGULATED FL
KAF | OW AT SIC
19034 | OUX CITY
563 | | 3 | 20 | 34 | 29 | 36 | 33 | 22 | 9 | 5 | 2 | 3 | 11 | 12 | 13 | | | KCFS | 19034 | 18.9 | 280
20.2 | 495
27.7 | 2088
35.1 | 2008
32.6 | 2014
33.8 | 2014
32.8 | 1966
32.0 | 1830
30.8 | 1821
29.6 | 849
28.5 | 396
28.5 | 274
17.3 | 815
13.3 | 800
13.0 | 821
14.3 | | | TOTAL
NAT INFLOW | 30601 | 1654 | 772 | 992 | 3640 | 4308 | 6949 | 4247 | 1647 | 1202 | 1202 | 505 | 250 | 34- | ne- | | 400- | | | DEPLETION
CHAN STOR | 2426
37 | 31
103 | 14
10 | 19
-16 | 152
-16 | 725
-35 | 1581
-41 | 884
0 | 104 | 1283
-179
56 | 1393
-70
28 | 595
-108
1 | 278
-50
0 | 317
-57
-7 | 727
-228 | 701
-239 | 1098
-153 | | | EVAPORATION
STORAGE | 1247
46300 | 47463 | 47950 | 48413 | 49797 | 51337 | 54651 | 76
55924 | 241
55262 | 302
54648 | 261
54057 | 117
53795 | 54
53672 | -7
62
53704 | -30
135 | -22 | 4 | | | SYSTEM POWE
AVE POWER M | R | 705 | 521 | 735 | 762 | 974 | 1138 | 1211 | 1226 | 1069 | 841 | 825 | 817 | 687 | 53679
804 | 53798
819 | 54231
756 | | | PEAK POW MW
ENERGY GWH | 8100.7 | 2161
253.8 | 2167
87.5 | 2174
158.7 | 2192
548.7 | 2206
724.6 | 2238
819.7 | 2247
900.7 | 2238
911.8 | 2234
770.0 | 2222
625.6 | 2200
297.1 | 2189
137.3 | 2189
131.9 | 2175
598.1 | 2195
609.0 | 756
2203
526.1 | | | DAILY GWH | **** | 16.9 | 12.5 | 17.6 | 18.3 | 23.4 | 27.3 | 29.1 | 29.4 | 25.7 | 20.2 | 19.8 | 19.6 | 16.5 | 19.3 | 19.6 | 18.1 | | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 29FEB | DATE OF STUDY 09/16/02 | | PREL | IMINARY | 2002-20 | 03 AOP M | MEDIAN | RUNOFF | | 99001 | 9901 | 4 P | AGE | 1 | |--|--|---|---|--|--|---|---|---|--|--|--|--|--| | TIME OF STUDY 12:12:31 | | CWCP
VALU | , STEADY
ES IN 10 | RELEAS | E, 5-DAY | SHORT | ENED SE | ASON | | | | DY NO | 6 | | 28FEB03
INI-SUM 15MAR | 2003
22MAR 31MAI | R 30APR 31MA | | | | 30SEP | | 15NOV | 22 N OV | 20
30 N OV | 04
31DEC | 31 JAN | 29FEB | | FORT PECK NAT INFLOW 7400 264 DEPLETION 122 -3 EVAPORATION 397 MOD_INFLOW 6881 267 | 123 158
-1 -2
125 160 | 2 70 30
0 558 90 | 4 316
6 1535 | 138
24
667 | | 319
-99
95
323 | 398
-64
83
379 | 188
-33
38
182 | 88
-15
18
85 | 100
-17
20
97 | 310
-122
43
389 | 261
-149
410 | 349
-114
463 | | RELEASE 5799 179 STOR CHANGE 1082 89 STORAGE 11372 11461 ELEV FTMGL 2214.8 2215.3 DISCH KCFS 10.0 6.0 POWER | 69 89
55 71
11516 11587
2215.6 2216.0
5.0 5.0 | 1 201 44
7 11788 1223
9 2217.2 2219. | 5 970
3 13202
7 2225.0 | 83
13285
2225.4 | | 396
-73
12963
2223.7
6.7 | 307
72
13034 | 149
34
13068
2224.3
5.0 | 97
-12
13056
2224.2
7.0 | 127
-30
13026 | 615
-226
12800 | 615
-205
12595
2221.7
10.0 | 604
-141
12454
2220.9
10.5 | | AVE POWER MW 76 PEAK POW MW 190 ENERGY GWH 914.6 27.3 | 63 63
190 191
10.6 13.7 | l 192 19 | 6 201 | 125
202
93.3 | 125
200
93.1 | 88
200
63.1 | 66
200
49.0 | 66
200
23.7 | 92
200
15.5 | 105
200
20.2 | 131
199
97.4 | 130
198
96.9 | 136
197
94.8 | | GARRISON NAT INFLOW 11001 469 DEPLETION 1503 50 CHAN STOR -5 42 EVAPORATION 459 | 219 282
23 30
11 | | 7 828 | 2066
556 | 581
81 | 497
-89
29 | 454
34
17 | 192
-92
0 | 89
-43
-20 | 102
-49
-10 | 253
-102
-20 | 237
-80 | 326
-51
-5 | | REG INFLOW 14834 640
RELEASE 13527 476
STOR CHANGE 1306 164
STORAGE 13697 13861
ELEV FTMSL 1821.7 1822.3
DISCH KCFS 24.0 16.0 | 276 341
208 268
67 73
13928 14001
1822.6 1822.9
15.0 15.0 | 3 1041 1199
3 29 393
1 14030 14423
9 1823.0 1824.9 | 9 1309
2 1365
3 15788
5 1829.5 | 28
2067
1322
745
16532
1832.2
21.5 | 88
996
1291
-295
16237
1831.1
21.0 | 110
901
917
-16
16221
1831.1
15.4 | 96
648
779
-132
16090
1830.6
12.7 | 43
389
377
12
16101
1830.7
12.7 | 20
189
236
-47
16054
1830.5
17.0 | 23
245
286
-41
16013
1830.3
18.0 | 900
1230
-330
15683
1829.2
20.0 | 932
1322
-390
15293
1827.7
21.5 | 976
1265
-290
15003
1826.7
22.0 | | POWER AVE POWER MW 181 PEAK POW MW 333 ENERGY GWH 1921.9 65.1 | 170 170
334 335
28.6 36.8 | 335 339 | 9 354 | 257
362
191.0 | 252
359
187.6 | 185
359
133.3 | 152
357
113.3 | 152
357
54.7 | 203
357
34.1 | 215
357
41.2 | 237
353
176.6 | 253
349
188.0 | 256
346
178.5 | | OAHE NAT INFLOW 2300 317 DEPLETION 570 22 CHAN STOR 10 37 EVAPORATION 420 | 148 190
10 13
5 0 | 45 62 | 2 120 | 162
138
2 | 33
90
2 | 118
23
25 | 14
-7
13 | 5
2 | 2
1
-20 | 3
1
-5 | -20
11
-9 | 15
-7 | 40
25
-2 | | REG INFLOW 14847 808
RELEASE 13508 464
STOR CHANGE 1339 344
STORAGE 14309 14653
ELEV FTMSL 1591.2 1592.6
DISCH KCFS 15.9 15.6 | 350 445
230 256
121 189
14774 14963
1593.1 1593.8
16.5 14.3 | 978 1234
371 130
15334 15464
1595.3 1595.8 | 1309
558
16022
1597.8 | 26
1322
1589
-267
15755
1596.8 | | 101
937
1413
-476
14832
1593.3 | | | | | | 1300
972
328
15309
1595.2 | 1278
939
339
15648
1596.4 | | POWER MW 186 PEAK POW MW 634 ENERGY GWH 1974.0 66.8 | 198 172
636 640
33.2 37.1 | 198 243
647 649 | 3 268
9 660 | 25.8
315
655
234.7 | 26.0
316
646
234.8 | 23.7
285
637
205.3 | 14.5
174
634
129.2 | 14.1
168
633
60.6 | 7.0
83
635
14.0 | 10.1
121
636
23.3 | 15.5
186
640
138.7 | 15.8
191
646
141.9 | 16.3
198
653
138.0 | | BIG BEND EVAPORATION 103 REG INFLOW 13405 464 RELEASE 13405 464 STORAGE 1682 1682 ELEV FIMSL 1420.0 1420.0 | 230 256
230 256
1682 1682
1420.0 1420.0 | 978 1234
1682 1682 | 1309
1682 | 6
1583
1583
1682
1420.0 | 20
1582
1582
1682 | 25
1388
1388
1682 | 22
870
870
1682 | 10
410
410
1682 | 5
92
92
1682 | 5
155
155
1682 | 11
944
944
1682 | 972
972
1682 | 939
939
1682 | | DISCH KCFS 15.9 15.6 POWER AVE POWER MW 74 PEAK POW MW 517 ENERGY GWH 773.9 26.6 | 16.5 14.3
77 67
509 509
13.0 14.5 | 16.4 20.1
77 94
509 509 | 22.0
103
509 | 25.7
120
509 | 25.7
120
509 | 23.3
111
517 | 14.2
70
538 | 13.8
69
538 | 6.6
34
538 | 9.8
50
538 | 1420.0
15.3
77
538 | 1420.0
15.8
78
538 | 1420.0
16.3
78
529 | | FORT RANDALL
NAT INFLOW 900 122 | | 55.4 69.9 | | 89.6 | 89.6 | 79.6 | 51.8 | 25.0 | 5.7 | 9.5 | 57.3 | 57.9 | 54.5 | | DEPLETION 80 1
EVAPORATION 117 | 57 73
1 1 | 115 140
4 9 | 12 | 74
18
8 | 57
15
25 | 42
7
31 | 2
1
25 | 2
1
10 | 1
0
4 | 1
1
4 | 10
3
10 | 3 | 19
3 | | REG INFLOW 14107 585
RELEASE 14107 295
STOR CHANGE 0 291
STORAGE 3124 3415 | 286 328
152 328
134 | 1089 1365
1089 1365 | 1482 | 1631
1631
0 | 1598
1598
0 | 1391
1536
-144 | 847
1484
-637 |
401
705
-304 | 88
233
-145 | 151
173
-22 | 941
738
203 | 969
719
250 | 955
581
374 | | STORAGE 3124 3415
ELEV FTMSL 1350.0 1353.6
DISCH KCFS 10.0 9.9
POWER | 3549 3549
1355.2 1355.2
11.0 18.4 | 3549 3549
1355.2 1355.2
18.3 22.2 | 1355.2 | 3549
1355.2
26.5 | 3549
1355.2 1
26.0 | 3405
353.5
25.8 | 2768
1345.1
24.1 | 2464
1340.4
23.7 | 2319
1337.9
16.8 | 2297
1337.5
10.9 | 2500
1341.0
12.0 | 2750 | 3124
1350.0
10.1 | | AVE POWER MW 82 PEAK POW MW 350 ENERGY GWH 1398.7 29.5GAVINS POINT | 93 156
355 355
15.6 33.6 | 155 187
355 355
111.5 139.4 | 355 | 223
355
166.1 | 219
355
162.8 | 216
349
155.4 | 194
318
144.1 | 180
296
64.6 | 124
285
20.8 | 80
283
15.3 | 89
300
66.1 | 90
317
66.7 | 81
338
56.1 | | NAT INFLOW 1450 92
DEPLETION 114 0
CHAN STOR -1 0
EVAPORATION 38 | 43 55
0 0
-2 -14 | 148 174
5 19
0 -7 | | 86
39
-3
2 | 103
10
1 | 77
- 5
0
9 | 122
2
3
8 | 50
5
1
4 | 23
2
13
2 | 27
3
11
2 | 77
10
-2 | 79
1
1 | 127
3 | | REG INFLOW 15404 388
RELEASE 15404 388
STOR CHANGE | 193 370
193 370 | 1232 1513
1232 1513 | 1619
1619 | 1672
1672 | 1685
1672
13 | 1609
1583
26 | 1599
1599 | 747
747 | 265
265 | 206
206 | 4
799
799 | 798
798 | 711
750 | | STORAGE 358 358 ELEV FTMSL 1206.0 1206.0 DISCH KCFS 13.0 13.0 POWER | 13.9 20.7 | 20.7 24.6 | 358
1206.0
27.2 | 358
1206.0
27.2 | 371
1206.5 1
27.2 | 397 | 397
1207.5 1
26.0 | 397
1207.5 1
25.1 | 397
1207.5
19.1 | 397
1207.5
13.0 | 397
1207.5 1
13.0 | 397
1207.5
13.0 | -39
358
1206.0
13.0 | | AVE POWER MW 46
PEAK POW MW 114
ENERGY GWH 646.0 16.4 | 49 71
114 114
8.2 15.4 | 71 84
114 114
51.4 62.7 | 93
114
66.8 | 93
114
69.0 | 93
115
69.3 | 92
117
66.6 | 91
117
67.8 | 88
117
31.7 | 67
117
11.3 | 46
117
8.8 | 46
78
34.3 | 46
78
34.3 | 46
76
32.0 | | GAVINS POINT - SIOUX CITY-
NAT INFLOW 1550 169
DEPLETION 241 6
REGULATED FLOW AT SIOUX CITY | 79 102
3 3 | 199 310
20 34 | 224
29 | 129
36 | 96
33 | 60
22 | 42
9 | 16
5 | 7
2 | 9 | 21
11 | 5
12 | 82
13 | | KAF 16713 551
KCFS 18.5 | 270 468
19.4 26.2 | 1411 1789
23.7 29.1 | 1814
30.5 | 1765
28.7 | 1735
28.2 | 1621
27.2 | 1632
26.5 | 758
25.5 | 270
19.5 | 212
13.3 | 809
13.1 | 791
12.9 | 819
14.2 | | TOTAL NAT INFLOW 24601 1435 DEPLETION 2630 76 CHAN STOR 3 80 EVAPORATION 1534 STORAGE 44542 45429 SYSTEM POWER | 669 860
35 46
13 -14
45807 46139 | 2307 3493
273 705
-22 -32
46741 47708 | 6073
1329
-37
50601 | 3346
925
-1
94
51161 | 1194
142
3
297
50184 | 1113
-141
55
371
49500 | 1032
-25
33
321
48637 | 452
-112
1
143
48300 | 211
-52
-28
66
48199 | 241
-60
-4
76
48207 | 651
-189
-32
165
48043 | 582
-198
-6
48025 | 943
-124
-4
48269 | | AVE POWER MW 644 PEAK POW MW 2138 ENERGY GWH 7629.0 231.8 DAILY GWH 15.5 | 650 700
2139 2144
109.2 151.1
15.6 16.8 | 776 927
2153 2163
559.0 689.9
18.6 22.3 | 1054
2194
758.5
25.3 | 1134
2197
843.8
27.2 | 1125
2185
837.2
27.0 | 977
2179
703.3
23.4 | 746
2164 | 723
2142 | 604
2132 | 617
2132
118.4
14.8 | 767
2108 | 787
2126 | 796
2138
553.8
19.1 | DATE OF STUDY 09/16/02 PRELIMINARY 2002-2003 AOP LOWER QUARTILE RUNOFF 99001 9901 PAGE 1 TIME OF STUDY 12:49:33 CWCP, STEADY RELEASE, 5-DAY SHORTENED SEASON STUDY NO 7 | TIME OF STUI | | 33 | | | | | | | KCEPT AS | | | ASON | | | | ON YO | , | |---|--|--|--|---|--|--|--|--|--|--|---|---|---|--|---|--|---| | 281 | FEB03
INI-SUM | 15MAR | 2000
22 MA R | | 30APR | 31MAY | 30 JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | | 31JAN | 29FEB | | FORT PECH
NAT INFLOW
DEPLETION
EVAPORATION
MOD INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 6000
114
460
5426
5827
-401
10922 | 2212.6 | 113
7
106
69
36
11037
2212.8
5.0 | 145
9
136
89
47
11083
2213.1
5.0 | 525
73
452
357
95
11178
2213.7
6.0 | 925
206
719
461
258
11436
2215.2 | | 633
173
28
432
584
-153
12001
2218.4
9.5 | 263
-25
89
199
584
-385
11616
2216.2
9.5 | 252
-91
111
232
429
-197
11420
2215.1 | 324
-61
96
289
303
-14
11405
2215.0
4.9 | 167
-28
43
152
147
5
11410
2215.0
4.9 | 78
-13
20
71
97
-26
11384
2214.9
7.0 | 89
-15
23
81
127
-46
11338
2214.6
8.0 | 295
-102
50
347
615
-268
11070
2213.0
10.0 | 212
-117
329
646
-317
10754
2211.1
10.5 | | | POWER AVE POWER N PEAK POW MV ENERGY GWH | | 62
186
22.5 | 63
186
10.5 | 63
187
13.5 | 75
187
54.2 | 94
189
70.2 | 121
195
87.1 | 122
194
90.7 | 121
191
90.1 | 91
189
65.7 | 62
189
46.4 | 62
189
22.5 | 88
189
14.8 | 101
189
19.4 | 125
187
93.2 | 130
184
97.0 | 129
182
90.0 | | GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER | 9400
1276
-16
536
13399
13896
-497
13150 | 443
24
43
611
476
135
13285
1820.0
16.0 | 207
11
265
208
57
13341
1820.3
15.0 | 266
15
341
268
73
13414
1820.6
15.0 | 712
58
-11
1000
1041
-41
13373
1820.4
17.5 | 1197
133
-16
1509
1291
218
13591
1821.3
21.0 | 2521
547
-21
2518
1398
1120
14711
1825.6
23.5 | 1765
446
33
1870
1414
456
15167
1827.3
23.0 | 496
93
104
883
1383
-500
14666
1825.4
22.5 | 417
-61
24
129
802
926
-125
14542
1824.9
15.6 | 400
73
24
112
542
775
-233
14309
1824.1
12.6 | 164
-49
0
50
308
375
-67
14242
1823.8
12.6 | 76
-23
-22
23
151
236
-85
14157
1823.5
17.0 | 87
-26
-11
27
203
286
-83
14074
1823.1
18.0 | 222
-6
-21
57
764
1230
-465
13609
1821.3
20.0 | 165
13
-5
792
1322
-530
13079
1819.2
21.5 | 262
27
839
1265
-426
12653
1817.5
22.0 | | AVE POWER N
PEAK POW MV
ENERGY GWH | 1903.5 | 178
326
64.1 | 167
327
28.1 | 168
328
36.2 | 195
327
140.8 | 235
330
174.5 | 267
343
192.1 | 267
348
198.3 | 261
342
194.0 | 180
341
129.5 | 145
338
108.0 | 145
337
52.1 | 194
336
32.6 | 205
336
39.3 | 226
330
167.9 | 239
324
177.9 | 241
319
168.0 | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS | 1449
570
6
474
14307
14819
5 -511
13749 | 154
22
36
644
500
144
13893
1589.5
16.8 | 72
10
5
275
275
-1
13893
1589.5
19.8 | 92
13
0
347
365
-18
13875
1589.5
20.4 | 229
45
-12
1213
1237
-24
13851
1589.4
20.8 | 130
62
-17
1343
1487
-144
13707
1588.8
24.2 | 577
120
-12
1843
1431
412
14119
1590.5
24.1 | 102
138
2
30
1351
1695
-344
13775
1589.1
27.6 | 24
90
2
93
1227
1695
-468
13307
1587.1
27.6 | 65
23
34
114
888
1349
-461
12846
1585.1
22.7 | 9
-7
15
98
708
993
-285
12560
1583.9
16.1 | 2
44
330
449
-119
12442
1583.3
15.1 | 1
-22
20
193
230
-37
12405
1583.2
16.5 | 1
-5
23
257
186
70
12475
1583.5
11.7 | -35
11
-10
51
1123
1123
-12
12463
1583.4
18.5 | -6
15
-8
1293
1012
282
12745
1584.7
16.5 |
36
25
-2
1274
781
493
13238
1586.8
13.6 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | | 197
619
70.8 | 232
619
39.0 | 239
618
51.7 | 243
618
175.2 | 282
615
209.8 | 282
623
202.7 | 322
616
239.8 | 319
606
237.6 | 260
596
187.2 | 184
589
136.9 | 171
586
61.5 | 187
586
31.4 | 133
587
25.6 | 209
587
155.4 | 187
594
139.1 | 156
605
108.6 | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FIMSL
DISCH KCFS
POWER
AVE POWER N
PEAK POW MW | 129
14690
14690
1682
1420.0
16.6 | 500
500
1682
1420.0
16.8
80
517 | 19.8
93
510 | 365
365
1682
1420.0
20.4 | 20.8
97
509 | 1487
1487
1682
1420.0
24.2 | 24.1
113
509 | 8
1687
1687
1682
1420.0
27.4
128
509 | 27.2
127
509 | 22.1
105
523 | 15.7
78
538 | 14.7
74
538 | 16.1
81
538 | 11.3
57
538 | 18.2
90
538 | 1012
1012
1682
1420.0
16.5 | 781
781
1682
1420.0
13.6 | | ENERGY GWHFORT RANDA MAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER AVE POWER M ENERGY GWH | 500
80
144
14967
14967
-1
3124
1350.0
10.5 | 28.6
68
1
566
295
272
3396
1353.4
9.9
82
349
29.5 | 32
1
306
171
136
3532
1355.0
12.3
104
354
17.4 | 20.7
41
1
405
388
17
3549
1355.2
21.7
183
355
39.6 | 70.1
64
4
1297
1297
3549
1355.2
21.8
184
355
132.5 | 84.2
51
9
1529
1529
3549
1355.2
24.9
209
355
155.9 | 81.1
130
12
1549
1549
3549
1355.2
26.0
219
355
157.9 | 95.5
26
18
10
1685
1685
0
3559
1355.2
27.4
231
355
171.5 | 94.6
49
15
32
1673
1673
0
3549
1355.2
27.2
229
355
170.3 | 75.7
23
7
39
1295
1610
-315
3234
1351.4
27.1
224
342
161.4 | 58.1
1
29
937
1571
-634
2600
1342.6
25.5
201
306
149.4 | 26.6
1
11
424
709
-285
23.8
177
285
63.6 | 13.7
0
5
219
237
-18
2297
1337.5
17.0
124
284
20.8 | 11.0
1
5
174
175
0
2297
1337.5
11.0
80
284
15.4 | 53
13
1110
744
366
2663
1343.5
12.1
91
311
67.5 | 59.6
-5
3
1004
732
272
2935
1347.4
11.9
93
329
69.4 | 45.4
15
3
793
604
189
3124
1350.0
10.5
85
338
58.9 | | GAVINS POI
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1251
114
-1
16056
16056
358
1206.0
13.0 | 13.0 | 43
0
-5
209
209
358
1206.0
15.0 | 23.8 | 23.8 | 26.7 | 143
24
-2
1666
1666
358
1206.0
28.0 | 81
39
-3
1722
1722
358
1206.0
28.0 | 80
10
0
9
1735
1722
13
371
1206.5
28.0 | 58
-5
0
11
1662
1636
26
397
1207.5 | 105
2
3
10
1666
1666
1666
397
1207.5
27.1 | 47
5
3
750
750
750
397
1207.5
25.2 | 22
2
13
267
267
267
397
1207.5 | 25
3
11
206
206
397
1207.5
13.0 | 70
10
-2
5
797
797
397
1207.5
13.0 | 68
1
0
799
799
397
1207.5
13.0 | 101
3
708
747
-39
358
1206.0
13.0 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 672.0 | 46
114
16.4 | 52
114
8.8 | 82
114
17.6 | 82
114
58.7 | 91
11 4
67.8 | 95
114
68.6 | 95
114
70.9 | 96
115
71.3 | 95
117
68.7 | 95
117
70.6 | 88
117
31.8 | 68
117
11.4 | 46
117
8.8 | 46
78
34.2 | 46
78
34.3 | 46
76
31.8 | | GAVINS POI
NAT INFLOW
DEPLETION
REGULATED FL
KAF
KCFS | 900
241 | 115
6 | 54
3 | 69
3
491
27.5 | 90
20
1486
25.0 | 174
34
1782
29.0 | 125
29
1762
29.6 | 75
36
1761
28.6 | 56
33
1745
28.4 | 35
22
1649
27.7 | 24
9
1681
27.3 | 13
5
757
25.5 | 270
19.5 | 7
3
210
13.2 | 13
11
799
13.0 | -3
12
784
12.8 | 48
13
782
13.6 | | TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER | | 1114
68
80
43614 | 520
32
0
43842 | 668
41
-18
43961 | 1744
205
-23
43991 | 2615
463
-39
44323 | 4950
903
-36
46572 | 2682
850
0
112
46532 | 968
216
3
351
45191 | 850
-105
58
435
44120 | 863
17
41
373
42953 | 390
-64
3
165
42487 | 182
-30
-31
77
42321 | 208
-34
-4
87
42262 | 570
-73
-33
190
41883 | 431
-73
-12
41591 | 745
-20
0
41574 | | AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH | | 644
2112
231.9
15.5 | 711
2111
119.5
17.1
22MAR | 831
2111
179.4
19.9 | 877
2111
631.5
21.0 | 1025
2113
762.4
24.6
31MAY | 1096
2139
789.5
26.3 | 1165
2136
866.8
28.0 | 1153
2118
857.7
27.7 | 956
2108
688.3
22.9 | 765
2078
569.4
18.4 | 717
2053
258.1
17.2 | 742
2050
124.7
17.8 | 622
2050
119.5
14.9 | 787
2031
585.2
18.9 | 776
2047
577.3
18.6 | 722
2049
502.7
17.3 | | | | | | | | o a.m.i | 3000M | 21001 | JIAOG | JUDEF | 31001 | TOMOV | 22NUV | 30NOV | 31DEC | 31JAN | 29FEB | DATE OF STUDY 09/16/02 PRELIMINARY 2002-2003 AOP LOWER DECILE RUNOFF 99001 9901 PAGE 1 TIME OF STUDY 12:39:33 CWCP, STEADY RELEASE, 5-DAY SHORTENED SEASON STUDY NO 8 | DATE OF STUDY 09/16/0 | 2 | | | | | | | | OWER DE | | | 99001 | 9901 9 | 901 PA | GE. | 1 | |---|---------------------|--------------------|------------------------|-----------------------|------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------|---------------------------|------------------------|-------------------------| | TIME OF STUDY 12:39:3 | 3 | | | | CWCP, | STEADY
IN 100 | RELEASE | , 5-DAY | SHORTE INDICA | NED SEA | SON | | | STUD | Y NO | 8 | | 28FEB03 | | 2003 | | 20200 | | 30JUN | 31JUL | | | 310CT | 15NOV | 22NOV | 200
30NOV | | 31JAN | 29FEB | | INI-SUMFORT PECK NAT INFLOW 5100 | 15MAR
234 | 22MAR
109 | 31MAR
140 | 30APR
515 | 31MAY
783 | 996 | 439 | 253 | 242 | 320 | 159 | 74 | 85 | 271 | 205 | 275
-58 | | DEPLETION 42 EVAPORATION 442 MOD INFLOW 4616 | 15
219 | 7
102 | 9
131 | 73
442 | 206
577 | 171
825 | 100
27
312 | -52
85
220 | -122
106
258 | -87
93
314 | -25
42
141 | -11
20
66 | -13
22
75 | -88
48
311 | 288
707 | 333
661 | | RELEASE 6002
STOR CHANGE -1386
STORAGE 10922 | 149
70
10992 | 69
33
11025 | 89
42
11067 | 357
85
11152 | 523
54
11207 | 565
260
11466 | 584
-272
11194 | 584
-364
10830 | 426
-168
10662 | 301
13
10675 | 146
-5
10670 | 97
-31
10639 | 127
-52
10587 | 615
-304
10283 | -419
9864 | -328
9536 | | ELEV FTMSL 2212.1
DISCH KCFS 9.0
POWER 9.0 | 5.0 | 2212.8
5.0 | 5.0 | 6.0 | 8.5 | 9.5 | 9.5 | 9.5 | 7.2 | 2210.7
4.9 | 4.9 | 7.0 | 8.0 | 10.0 | 11.5 | 2203.6
11.5 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 897.3 | 62
186
22.5 | 63
186
10.5 | 63
187
13.5 | 75
187
54.1 | 106
188
79.2 | 119
190
86.0 | 119
188
88.9 | 118
185
88.1 | 89
183
63.9 | 61
183
45.1 | 183
21.8 | 86
183
14.5 | 99
183
18.9 | 122
180
91.1 | 139
177
103.5 | 174
95.6 | | GARRISON NAT INFLOW 7299 DEPLETION 1115 CHAN STOR -27 | 270
24
43 | 126
11 | 162
15 | 700
58
-11 | 903
133
-27 | 2020
547
-11 | 1277
361 | 361
64 | 277
-64
25 | 390
66
24 | 161
-53 | 75
-25
-23 | 86
-28
-11 | 108
-12
-21 | 160
4
-16 | 223
14 | | EVAPORATION 512
REG INFLOW 11646
RELEASE 13319 | 437
476 | 184
208 | 237
268 | 988
952 | 1266
1138 | 2028
1279 | 32
1469
1291 | 99
782
1261 | 124
668
926 | 107
542
775 | 48
312
375 | 152
236 | 25
205
286
-81 | 55
659
1230
-571 | 847
1353
-506 | 870
1265
-395 | | | | | -31
13056
1819.1 | | 128
13221
1819.8 | 748
13969
1822.7
21.5 | 177
14146
1823.4
21.0 | -479
13667
1821.6
20.5 | -258
13409
1820.5
15.6 | -233
13177
1819.6
12.6 | -63
13113
1819.3
12.6 | -84
13029
1819.0
17.0 | 12949 | 12378 | 11872 | 11477
1812.5
22.0 | | DISCH KCFS 23.5
POWER
AVE POWER MW | 16.0 | 15.0 | 15.0 | 16.0 | 205 | 241 | 238 | 232 | 175
328 | 141
325 | 140
324 | 188
323 | 199
322 | 218
316 | 236
309 | 233
304 | | PEAK POW MW
ENERGY GWH 1782.6 | 324
63.9 | 324
28.0 | 324
35.9 | 324
127.7 | 326
152.6 | 334
173.4 | 336
177.2 | 331
172.4 | 125.9 | 104.8 | 50.5 | 31.6 | 38.2 | 162.5 | 175.7 | 162.1 | | NAT INFLOW 1049
DEPLETION 570
CHAN STOR 5 | 197
22
36 | 92
10
5 | 118
13
0 | 183
45
-5 | 100
62
-12 | 215
120
-15 | 82
138
2 | 21
90
2 | 64
23
25 | 5
-7
15 | -5
2 | -2
1
-23 | -3
1
-5 | -48
11
-11 | -12
15
-10 | 41
25 | |
EVAPORATION 440
REG INFLOW 13363 | 688 | 295 | 373 | 1085 | 1164 | 1360 | 29
1209 | 88
1106 | 107
886 | 91
712 | 40
328 | 19
191
232 | 21
256
189 | 47
1114
983 | 1315
997 | 1281
975 | | RELEASE 15077
STOR CHANGE -1714 | 501
186
13935 | 297
-2
13933 | 375
-2
13930 | 1262
-177
13754 | 1510
-346
13408 | 1446
-87
13321 | 1713
-504
12817 | 1712
-605
12212 | 1385
-499
11713 | 1047
-335
11378 | 453
-125
11253 | -41
11212 | 66
11279 | 131
11409 | 318
11728 | 307
12035 | | DISCH KCFS 16.6 | 1589.7 | | | | | | 1585.0
27.9 | 1582.3
27.8 | 1580.0 | 1578.4
17.0 | 1577.8 | 1577.6
16.7 | | | | 1581.5
16.9 | | POWER
AVE POWER MW
PEAK POW MW
ENERGY GWH 2067.4 | 197
620
71.1 | 251
620
42.2 | 246
619
53.2 | 248
616
178.6 | 285
608
212.1 | 281
607
202.1 | 319
595
237.3 | 314
581
233.8 | 259
569
186.6 | 188
560
139.7 | 167
557
60.1 | 182
556
30.7 | 131
558
25.1 | 175
561
130.4 | 179
569
133.2 | 189
577
131.4 | | BIG BEND
EVAPORATION 129
REG INFLOW 14948 | 501 | 297 | 375 | 1262 | 1510 | 1446 | 8
1705 | 24
1687 | 31
1354 | 27
1020 | 12
441 | 6
226 | 7
183 | 14
969 | 997 | 975 | | RELEASE 14948
STORAGE 1682 | 501
1682 | 297
1682 | 375
1682 | 1262
1682 | 1510
1682 | 1446
1682 | 1705
1682 | 1687
1682 | 1354
1682 | 1020
1682 | 441
1682 | 226
1682 | 183
1682 | 969
1682 | 997
1682 | 975
1682 | | ELEV FTMSL 1420.0
DISCH KCFS 16.6
POWER | 1420.0
16.9 | 1420.0
21.4 | 1420.0
21.0 | 1420.0
21.2 | | 1420.0
24.3 | | 1420.0
27.4 | 1420.0
22.8 | 1420.0
16.6 | 1420.0
14.8 | 1420.0
16.3 | 1420.0
11.5 | 1420.0
15.8 | 1420.0
16.2 | 1420.0
16.9 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 863.5 | 80
518
28.7 | 100
510
16.9 | 98
509
21.3 | 99
509
71.5 | 115
509
85.5 | 114
509
81.9 | 130
509
96.6 | 128
509
95.6 | 108
523
77.8 | 82
538
61.3 | 75
538
26.9 | 82
538
13.8 | 58
538
11.2 | 79
538
58.8 | 80
538
59.3 | 81
529
56.6 | | FORT RANDALL
NAT INFLOW 300
DEPLETION 80 | 55
1 | 26
1 | 33
1 | 43
4 | 35
9 | 120
12 | 13
18 | 36
15 | -10
7 | -52
1 | -3
1 | -1
0 | -1
1 | 3 | -6
3 | 12
3 | | EVAPORATION 143 REG INFLOW 15025 | 555 | 322 | 408 | 1301 | 1536 | 1554 | 10
1690 | 32
1677
1677 | 39
1298 | 29
937
1572 | 11
426
711 | 220
237 | 5
176
176 | 12
953
750 | 988
738 | 98 4
610 | | RELEASE 15026
STOR CHANGE -1
STORAGE 3124 | 298
258
3382 | 172
150
3532 | 391
17
3549 | 1301
3549 | 1536
3549 | 1554
3549 | 1690
0
3549 | 0
3549 | 1613
-315
3234 | -634
2600 | -285
2315 | -18
2297 | 2297 | 203
2500 | 250
2750 | 374
3124 | | ELEV FTMSL 1350.0 | 1353.2 | 1355.0 | 1355.2 | 1355.2 | 1355.2
25.0 | 1355.2 | 1355.2 | 1355.2 | 1351.4 | 1342.6 | 1337.8 | 1337.5 | | 1341.0 | 1344.8 | 1350.0
10.6 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 1483.5 | 83
348
29.8 | 105
354
17.6 | 355 | 185
355
132.9 | 355 | 220
355
158.4 | 355 | | 225
342
161.7 | 201
306
149.4 | | 124
284
20.9 | 284 | | 92
317
68.4 | 85
338
58.8 | | GAVINS POINT
NAT INFLOW 1200 | | 41 | | 120 | | 138 | | | | | 45 | 21 | 24 | 67 | 65 | 98 | | DEPLETION 114 CHAN STOR -1 EVAPORATION 47 | 0
1 | 0 | 0 | 5
0 | 19 | 24
-2 | | 0 | 0 | 3 | 3 | 13 | 11 | | 1
0 | 3 | | REG INFLOW 16064
RELEASE 16064
STOR CHANGE | 386 | 209
209 | 425
425 | 1416
1416 | | 1666
1666 | 1722 | 1735 | 1662
1636 | 1666 | 750 | 267 | 206 | | 802
802 | 710
749
-39 | | STORAGE 358 | 1206.0 | | 1206.0 | | 1206.0 | | 1206.0 | 371
1206.5 | 397
1207.5 | 1207.5 | 1207.5 | 1207.5 | 1207.5 | 1207.5 | | 358
1206.0
13.0 | | AVE POWER MW
PEAK POW MW
ENERGY GWH 672.3 | 45
114
16.3 | 52
114
8.8 | 114 | 82
114
58.7 | 114 | 95
114
68.6 | 114 | 115 | 117 | 117 | 117 | 117 | 117 | 78 | 46
78
34.5 | 46
76
32.0 | | GAVINS POINT - SIO
NAT INFLOW 550
DEPLETION 241 | 36
6 | 17
3 | | | | 106
29 | | | | | | | | | -5
12 | 26
13 | | REGULATED FLOW AT SI
KAF 16373
KCFS | | | | 1473
24.8 | | 1743
29.3 | | | | | | | | | 785
12.8 | 762
13.3 | | TOTAL
NAT INFLOW 15498
DEPLETION 2162 | | | | | | 3595
903 | | | | | | | | | 407
-48 | 675
-3 | | CHAN STOR -23
EVAPORATION 1714 | 80 | 0 | -18 | -15 | -45 | -27 | 0
108 | 3
337 | 50
4 17 | 42
357 | 3
158 | -33
73 | <u>4</u>
83 | -34
181 | -26 | 3 | | STORAGE 42985
SYSTEM POWER | | | | | 43424 | | | 42311 | 41097 | 39908 | 39430 | 39256 | | 38649 | | | | AVE POWER MW
PEAK POW MW
ENERGY GWH 7766.7 | | 123.9 | 2108
181.5 | 2106
623.6 | 2100
7 5 3.8 | | 2097
842.9 | 2076
831.7 | 2063
684.6 | 2030
571.1 | 2005
255.0 | 2001
122.9 | 2002
117.8 | 1973
544.4 | | | | DAILY GWH | 15.5 | 17.7 | 20.2 | 20.8 | 24.3 | 25.7 | 27.2 | 26.8 | 22.8 | 18.4 | 17.0 | 17.6 | 14.7 | 17.6 | 18.5 | 18.5 | STUDY NO 9 TIME OF STUDY 13:42:14 CWCP, FLOW TO TARGET | TIME OF STU | OY 13:42: | 14 | | | CWCP, F | | | 00 AF E | XCEPT A | s indic | ATED | | | | STUDY | NO | 9 | |---|--|---|--|--|---|---|--|--|---|---|--|--|---|---|--|--|---| | 28 | FEB03
INI-SUM | 15MAR | 2000
22MAR | | 30APR | | | | 31AUG | | | 15NOV | 22 N OV | 20
30 N OV | | 31JAN | 29FEB | | FORT PECI
NAT INFLOW
DEPLETION
EVAPORATION
MOD INFLOW
RELEASE
STOR CHANGI
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 9600
268
N 320
9012
5015
3997 | | 164
69
94 | 192
-19
210
89
121
12265
2219.9
5.0 | 728
298
430
12695
2222.3 | | 2002
506
1496
15135
2234.7 | 164
21
1034
523
512
15647 | - 96
66
486
523
- 37
15610
2236.9 | -105
84
400
357
43
15653
2237.0 | -51
74
508
280
228
15881 | 210
-20
18
212
119
93
15974
2238.5
4.0 | 98
-9
8
99
56
43
16018
2238.7
4.0 | -11
10
113
127
-14
16004 | 346
-116
39
423
510
-87
15917
2238.2
8.3 | -150
447
523
-76
15841 | 400
-122
522
489
33
15874
2238.1
8.5 | | AVE POWER I
PEAK POW M
ENERGY GWH | | 77
194
27.7 | 64
195
10.8 | 65
196
14.0 | 65
198
46.8 | 79
203
59.0 | 114
209
82.4 | 116
211
86.5 | 117
210
86.8 | 82
211
59.3 | 63
211
46.7 | 55
212
19.9 | 55
212
9.3 | 110
212
21.2 | 114
211
85.1 | 117
211
87.1 | 117
211
81.4 | | GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE | 14199
1213
37 | 515
33
63
724
476 | 240
16
10
305
222 | 309
20
378
286 | 1376
9
1665
1131 | 1934
268
-10
2025
1291 | 3530
919
-26
3091
1428 | 2647
545
0
23
2602
1414 | 74 | 574
-121
25
93
984
1131 | 652
-3
14
81
869
1043 | 260
-98
5
19
463
452 | 121
-46
0
9
213
211 | 139
-52
-39
10
268
286 | 278
-132
-3
42
876
1230 | 348
-116
-2
985
1445 | 434
-83
0
1006
1352 | | STOR CHANGI
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 14315 | 248
14562
1825.0
16.0 | | 93
14738
1825.7
16.0 | 534
15272
1827.7
19.0 | 733
16005 | 1663
17668 | 1188
18856 | -116
18740 | -147
18593 | -174
18419 | 11
18430 | 3
18433 | -18
18415 | -354
18061
1837.3
20.0 | -460
17601 | -346
17255
1834.7
23.5 | | AVE POWER N
PEAK POW MV
ENERGY GWH | 2188.6 | 184
341
66.2 | 185
342
31.0 | 185
343
40.0 | 221
349
159.2 | 248
357
184.4 | 291
373
209.2 | 287
385
213.6 | 278
383
206.5 | 240
382
172.5 | 213
380
158.8 | 191
381
68.7 | 191
381
32.1 | 226
380
43.4 | 250
377
186.0 | 291
373
216.3 | 288
369
200.7 | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION | 3850
570
9 | 559
22
41 | 261
10 | 335
13 | 474
45
-13 | 347
62
-8 | 881
120
-12 | 297
138
4
23 | 123
90
4
72 | 163
23
12
89 | 102
-7
8
77 | 109
2
7
18 | 51
1 | 58
1
-12
10 | 22
11
-8
41 | 10
15
-14 | 59
25 | | REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 14944 | 1054
381
672
15616
1596.3
12.8 | 473
197
276
15892
1597.4
14.2 |
608
229
378
16270
1598.7
12.9 | 1547
765
781
17051
1601.5
12.9 | 1568
978
590
17642
1603.6
15.9 | 2177
906
1270
18912
1607.7
15.2 | 1554
1634
-80
18832
1607.5
26.6 | 1318
1806
-488
18344
1605.9
29.4 | 1194
1574
-380
17963 | 1083
1094
-11
17952 | 548
526
22
17974
1604.7
17.7 | 252
243
9
17983 | 322
233
88
18072
1605.0
14.7 | 1192
1261
-69
18002 | 1426
1129
296
18299
1605.8
18.4 | 1386
843
543
18842
1607.5
14.6 | | AVE POWER N
PEAK POW MW
ENERGY GWH | 2127.7 | 155
652
55.9 | 173
657
29.1 | 158
664
34.2 | 160
679
115.4 | 200
690
149.2 | 195
712
140.7 | 343
710
255.4 | 377
702
280.6 | 337
695
242.9 | 227
695
168.8 | 225
695
81.1 | 223
696
37.5 | 188
697
36.1 | 262
696
194.6 | 235
701
174.8 | 189
711
131.5 | | BIG BENI
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 71
13730
13730
1682 | 381
381
1682
1420.0
12.8 | 197
197
1682
1420.0
14.2 | 229
229
1682
1420.0
12.9 | 765
765
1682
1420.0
12.9 | 978
978
1682
1420.0
15.9 | 906
906
1682
1420.0
15.2 | 5
1629
1629
1682
1420.0
26.5 | 15
1791
1791
1682
1420.0
29.1 | 19
1555
1555
1682
1420.0
26.1 | 16
1078
1078
1682
1420.0
17.5 | 522
522
1682
1420.0
17.5 | 2
241
241
1682
1420.0
17.4 | 2
231
231
1682
1420.0
14.6 | 9
1253
1253
1682
1420.0
20.4 | 1129
1129
1682
1420.0
18.4 | 843
843
1682
1420.0
14.6 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 793.7 | 61
517
21.9 | 66
509
11.1 | 60
509
13.0 | 509
43.4 | 74
509
55.4 | 71
509
51.4 | 124
509
92.3 | 136
509
101.4 | 124
517
89.2 | 86
538
64.0 | 88
538
31.7 | 87
538
14.7 | 73
538
14.1 | 101
538
74.8 | 89
538
66.5 | 70
529
48.9 | | FORT RANDA
NAT INFLOW
DEPLETION
EVAPORATION | 1501
80
82 | 190
1 | 89
1 | 114
1 | 298
4 | 159
9 | 224
12 | 111
18
6 | 72
15
19 | 92
7
24 | 60
1
19 | 5
1
4 | 2 0 2 | 3
1
2 | 23
3
8 | 10
3 | 49
3 | | REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 3124 | 570
280
291
3415
1353.6
9.4 | 285
151
134
3549
1355.2
10.9 | 343
343
3549
1355.2
19.2 | 1059
1059
3549
1355.2
17.8 | 1128
1128
3549
1355.2
18.3 | 1118
1118
3549
1355.2
18.8 | 1716
1716
0
3549
1355.2
27.9 | 1829
1829
0
3549 | 1617
1761
-144
3405 | 1118
1743
-624
2781 | 522
836
-313
2468
1340.4
28.1 | 242
390
-149
2319 | 232
254
-22
2297 | 1265
899
366
2663 | 1136
879
257
2920
1347.2
14.3 | 889
685
204
3124
1350.0
11.9 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 1488.8 | 78
350
28.0 | 92
355
15.4 | 162
355
35.1 | 151
355
108.5 | 155
355
115.5 | 159
355
114.5 | 235
355
174.7 | 250
355
185.9 | 247
349
177.8 | 227
319
168.9 | 212
297
76.5 | 206
285
34.5 | 116
284
22.4 | 109
312
81.4 | 112
328
83.1 | 96
338
66.7 | | GAVINS POI
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE | 2252
114
-6
26
17176
17176 | 107
0
0
387
387 | 50
0
-3 | 64
0
-16 | 246
5
3 | 319
19
-1
1427 | 281
24
-1
1375 | 211
39
-17
2
1869 | 170
10
-4
5
1981 | 135
-5
0
7
1894 | 157
2
2
6
1894 | 60
5
0
1
890 | 28
2
0
1
415 | 32
3
22
1
305 | 95
10
3
3
983 | 106
1
1
985 | 191
4
880 | | STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 358 | 358 | 358
1206.0
14.3 | 391
358
1206.0
21.9 | 358
1206.0
21.9 | 358
1206.0
23.2 | 358
1206.0
23.1 | 358
1206.0
30.4 | 1968
13
371
1206.5
32.0 | 1868
26
397
1207.5
31.4 | 397
1207.5
30.8 | 397
1207.5
29.9 | 397
1207.5
29.9 | 305
397
1207.5
19.2 | 983
397
1207.5
16.0 | 985
397
1207.5
16.0 | 919
-39
358
1206.0
16.0 | | POWER
AVE POWER M
PEAK POW MW
ENERGY GWH | W 712.1 | 46
114
16.4 | 50
114
8.4 | 75
114
16.3 | 75
114
54.2 | 80
114
59.2 | 79
114
57.1 | 102
114
75.8 | 106
115
78.9 | 106
117
76.3 | 106
117
78.5 | 103
117
37.2 | 103
117
17.4 | 68
117
13.0 | 57
78
42.1 | 57
78
42.2 | 56
76
39.1 | | GAVINS POI
NAT INFLOW
DEPLETION
REGULATED FLO | 3100
241
OW AT SIO | 195
6
UX CITY | 91
3 | 117 | 1006
20 | 553
34 | 318
29 | 246
36 | 184
33 | 127
22 | 66
9 | 26
5 | 12
2 | 14
3 | 30
11 | 12
12 | 105
13 | | KAF
KCFS
TOTAL | 20035 | 576
19.4 | 286
20.6 | 504
28.2 | 2289
38.5 | 1946
31.6 | 1664
28.0 | 2079
33.8 | 2119
34.5 | 1973
33.2 | 1951
31.7 | 910
30.6 | 425
30.6 | 316
19.9 | 1002
16.3 | 985
16.0 | 1011
17.6 | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
STORAGE
SYSTEM POWEI | 34502
2486
41
1186
46300 | 1885
30
104
47683 | 879
14
8
48269 | 1131
18
-16
48861 | 4197
152
-10
50607 | 4916
683
-20
52874 | 7725
1593
-39
57304 | 4731
940
-14
79
58923 | 1846
105
0
251
58295 | 1470
-179
37
315
57693 | 1568
-49
25
272
57112 | 670
-105
13
64
56925 | 312
-49
0
30
56832 | 357
-56
-28
34
56867 | 794
-213
-9
141
56722 | 783
-235
-16
56740 | 1238
-164
4
57135 | | AVE POWER MY
PEAK POW MW
ENERGY GWH
DAILY GWH | | 600
2168
216.1
14.4 | 630
2172
105.9
15.1 | 706
2181
152.5
16.9 | 733
2204
527.5
17.6 | 837
2228
622.6
20.1 | 910
2272
655.3
21.8 | 1207
2284
898.1
29.0 | 1264
2275
940.1
30.3 | 1136
2271
818.1
27.3 | 922
2261
685.7
22.1 | 875
2239
315.2
21.0 | 866
2228
145.5
20.8 | 782
2228
150.1
18.8 | 892
2212
664.0
21.4 | 900
2229
669.9
21.6 | 816
2234
568.3
19.6 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APP | 31MAV | 3 O.TITN | 21 7777 | יייי אוזעי | 20000 | 31000 | 1 537011 | 0.032022 | | | | - | DATE OF STUDY 09/16/02 TIME OF STUDY 13:50:24 CWCP. F CWCP, FLOW TO TARGET VALUES IN 1000 AF EXCEPT AS INDICATED 28FFB03 22MAR INI-SUM 15MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB - FORT PECK-NAT INFLOW -15 -19 489 -27 -107 343 -31 -95 -95 453 523 -70 15109 -105 -73 72 -12 15 -14 18 -125 38 EVAPORATION MOD INFLOW 374 518 3297 149 RELEASE 83 827 -127 STOR CHANGE 5178. 15157 15425 -115 -40 STORAGE 11877 12026 2217.7 2218.5 2219.0 12217 12589 2219.6 2221.7 ELEV FTMSL DISCH KCFS 2234.5 2226.1 2232.7 2234 9 2234.8 2235.8 2236.0 2236.1 2235.6 2235.0 2234.8 12.0 6.0 5.0 5.0 5.0 6.0 8.5 8.5 5.5 4.5 4.5 4.5 6.0 8.5 9.0 9.0 POWER AVE POWER MW PEAK POW MW 209 27.7 13.9 46.7 15.8 ENERGY GWH 823.9 10.8 58.8 82.0 53.8 85.9 22.4 91.4 86.5 85.4 -GARRISON NAT INFLOW DEPLETION 51 -50 -15 -121 - 2 - 94 -138 -25 -87 367 CHAN STOR -10 -26 n EVAPORATION - 5 REG INFLOW 476 215 421 197 1323 RELEASE 511 15631 1411 1008 STOR CHANGE 15120 -188 17863 1836.7 -159 -65 4 8 -430 16800 STORAGE ELEV FTMSL 1824.1 1824.9 1825.2 1825 5 827.1 18.5 .829.0 20.5 833.9 1836.0 1836.0 1836.0 1835.8 1832.0 1833.1 DISCH KCFS 25.0 16.0 15.5 15.5 23.0 22.5 22.0 18 0 14.2 14.2 AVE POWER MW 341 30.0 342 38.7 367 373 373 42.7 369 PEAK POW MW ENERGY GWH 203.2 2086.8 66.2 198.4 130.7 208.1 193.1 NAT INFLOW 22 41 45 -13 13 2 0 138 2 -7 1 11 25 DEPLETION CHAN STOR 10 - 9 -16 - 9 -13 EVAPORATION 477 562 393 15337 REG INFLOW RELEASE 1600 734 613 18014 948 443 275 579 1020 STOR CHANGE 14944 -426 16954 -144 16810 -129 STORAGE -12 16767 602.7 ELEV ETMSI 1593.8 15.2 595.3 .596.5 7.8 601.1 1604.6 1604.2 1602.7 1601.2 1600.7 1600.6 17.1 DISCH KCFS POWER 604.8 14.8 14.4 16.9 16.3 26.0 28.5 25.9 16.9 13.3 17.7 15.4 12.8 AVE POWER MW PEAK POW MW 677 156.3 158.7 76.7 144.3 ENERGY GWH 2040.3 81.9 16.0 39.2 128.1 147.8 245.8 267.6 233.3 35.5 -BIG BEND-EVAPORATION REG INFLOW RELEASE 1033 1033 1682 13385 208 562 858 1037 967 1738 1521 1682 948 734 1682 1682 1682 1682 STORAGE 1682 ELEV FTMSL 1420.0 1420.0 420.0 1420.0 420.0 20.0 20.0 20.0 120.0 420.0 20 0 20.0 16.7 20.0 DISCH KCES 15.2 14.8 14.4 16.9 16.3 25.9 28.3 25.6 16.8 16.8 13.1 15.4 12.8 AVE POWER MW 12.7 42.7 ENERGY GWH 772.8 31.9 15.0 48.6 90.4 61.4 30.4 64.5 56.0 --FORT RANDALL NAT INFLOW 1 7 3 DEPLETION 88 19 ō EVAPORATION 295 REG INFLOW 157 1699 227 RELEASE 366 237 224 STOR CHANGE ō 3532 -147 2319 -22 2297 -144 -630 -310 STORAGE 55.2 1345.2 ELEV FTMSL DISCH KCFS 1350.0 1355.0 1355.2 1355.2 19.5 355.2 18.4 337.5 353.5 340.4 343.5 9.5 9.9 19.2 19.3 27.0 28.8 28.5 27.3 27.0 27.1 POWER 11.6 9.5 AVE POWER MW 355 318 285 PEAK POW MW 29.7 117.7 53.3 ENERGY GWH 1428.3 33.3 -GAVINS POINT -5 2 5 1 DEPLETION CHAN STOR EVAPORATION -2 -15 -1 - 3 -16 ō - 3 ō ō REG INFLOW 1363 750 RELEASE STOR CHANGE 397 - 3 9 STORAGE ELEV FTMSL 1206.0 1206.0 13.0 13.0 1206.0 206.0 1206.0 1206.0 206.0 1206.0 1206 5 DISCH KCFS 1206.0 14.3 21.8 21.8 23.0 22.9 29.0 30.6 30.0 29.4 POWER AVE POWER MW PEAK POW MW ENERGY GWH 28.5 28.5 13.0 115 76.5 117 58.7 56.6 73.3 74.0 16.7 34.2 675.1 16.4 8.4 16.2 76.0 35.9 34.4 32.0 -GAVINS POINT SIOUX CITY-NAT INFLOW 2500 181 DEPLETION 241 6
REGULATED FLOW AT SIOUX CITY 36 33 22 9 3 12 13 KAF 27.7 31.7 KCFS 14.3 18.9 20.2 35.1 29.0 32.5 31.3 30.1 29.0 29.0 17.8 13.2 - TOTAL NAT INFLOW DEPLETION 152 -70 28 -50 -57 -7 -228 10 -13 76 -179 47 -108 1258 -153 4 CHAN STOR -239 -16 -11 -21 -37 EVAPORATION -29 136 -18 STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW 2167 87.5 2174 158.7 2210 2257 2230 253.8 544.0 911.8 780.4 ENERGY GWH 601.7 632.0 302.2 134.9 636.0 139.5 DAILY GWH 519.4 17.9 16.9 12.5 17.6 18.1 20.4 21.9 28.1 29.4 26.0 20.5 19.9 19.3 19.4 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB CWCP, FLOW TO TARGET, 5-DAY SHORTENED SEASON STUDY NO 11 VALUES IN 1000 AF EXCEPT AS INDICAPED TIME OF STUDY 14:26:43 | TIME OF STUDY | 14:26:4 | 13 | | | | CWCP,
VALUES | IN 100 | TARGET
D AF EX | CEPT AS | INDICA | TED SEA | 3014 | | 200 | 4 | | - | |---|---|---|--|--|---|---|--|--|--|--|--|--|--|--|--|--|---| | 28FE | B03
INI-SUM | 15MAR | 2003
22 M AR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 200
30NOV | 31DEC | 31JAN | 29FEB | | FORT PECK-
NAT INFLOW
DEPLETION
EVAPORATION
MOD INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL
DISCH KCFS | 7400
122
399
6879
5678
1200
11372
2214.8 | 264
-3
267
179
89
11461
2215.3
6.0 | 123
-1
125
69
55
11516
2215.6
5.0 | 158
-2
160
89
71
11587
2216.0
5.0 | 628
70
558
357
201
11788
2217.2
6.0 | 1210
304
906
430
476
12263
2219.9 | 1851
316
1535
536
999
13263
2225.3
9.0 | 829
138
24
667
553
113
13376
2225.9 | 324
-87
76
335
553
-219
13157
2224.8
9.0 | | 398
-64
84
378
308
71
13153
2224.7
5.0 | 188
-33
38
182
149
33
13186
2224.9
5.0 | 88
-15
18
85
97
-12
13174
2224.8
7.0 | 100
-17
20
97
127
-30
13144
2224.7
8.0 | 310
-122
44
388
615
-227
12918
2223.5
10.0 | 261
-149
410
615
-205
12713
2222.4
10.0 | 349
-114
463
604
-141
12572
2221.6
10.5 | | POWER MV
PEAK POW MW
ENERGY GWH | | 76
190
27.3 | 63
190
10.6 | 63
191
13.7 | 76
192
55.0 | 90
196
66.9 | 118
201
84.6 | 119
202
88.6 | 119
201
88.5 | 88
200
63.4 | 66
201
49.2 | 66
201
23.8 | 92
201
15.5 | 106
201
20.3 | 131
200
97.7 | 131
198
97.2 | 137
198
95.1 | | GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL | 11001
1503
-5
459
14713
13243
1470
13697 | 469
50
42
640
476
164
13861
1822.3 | 219
23
11
276
208
67
13928 | 282
30
341
268
73
14001
1822.9 | 853
129
-11
1070
1041
29
14030
1823.0 | 1423
277
-11
1566
1168
398
14428
1824.5 | 2958
828
-21
2645
1279
1365
15793
1829.6 | 2066
556
28
2036
1291
745
16538
1832.2 | 581
81
88
966
1261
-295
16243
1831.2 | 497
-89
24
110
896
898
-2
16241
1831.1 | 454
34
17
96
648
763
-115
16127
1830.7 | 192
-92
0
44
389
369
20
16146
1830.8 | 89
-43
-20
20
189
236
-47
16099
1830.6 | 102
-49
-10
23
245
286
-41
16058
1830.5 | | 237
-80
932
1261
-329
15399
1828.1 | | | DISCH KCFS POWER AVE POWER MI PEAK POW MW ENERGY GWH | 24.0 | 16.0
181
333
65.1 | 15.0
170
334
28.6 | 15.0
170
335
36.8 | 17.5
199
335
143.1 | 19.0
217
340
161.3 | 21.5
250
354
180.3 | 21.0
251
362
186.7 | 20.5
246
359
183.2 | 15.1
181
359
130.5 | 12.4
149
358
111.0 | 12.4
149
358
53.6 | 17.0
203
357
34.2 | 18.0
215
357
41.3 | 20.0
238
354
176.8 | 20.5
242
350
179.7 | 21.0
246
348
171.0 | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS | 2300
570
14
428
14559
13050
1509
14309
1591.2 | 317
22
37
808
464
344
14653
1592.6
15.6 | 148
10
5
350
230
121
14774
1593.1
16.5 | 190
13
0
445
256
189
14963
1593.8
14.3 | 364
45
-11
1349
978
371
15334
1595.3
16.4 | 236
62
-7
1336
1069
266
15600
1596.3
17.4 | 689
120
-11
1837
988
849
16449
1599.4
16.6 | 162
138
2
27
1290
1523
-233
16216
1598.5
24.8 | 33
90
2
84
1122
1629
-507
15710
1596.7
26.5 | 118
23
24
103
914
1436
-522
15187
1594.7
24.1 | 14
-7
12
88
708
917
-209
14978
1593.9 | 5
2
0
40
333
431
-98
14880
1593.5 | 2
1
-21
19
198
102
976
14976
1593.9
7.4 | 3
1
-5
21
262
160
101
15077
1594.3
10.1 | -20
11
-9
46
1143
955
188
15265
1595.0 | 15
-2
1243
972
271
15536
1596.0
15.8 | 40
25
-2
1221
939
282
15818
1597.1
16.3 | | POWER
AVE POWER M
PEAK POW MW
ENERGY GWH | | 186
634 | 198
636
33.2 | 172
640
37.1 | 198
647
142.7 | 211
652
157.0 | 204
668
146.9 | 305
663
227.2 | 324
654
240.9 | 292
644
210.4 | 180
640
133.7 | 174
638
62.7 | 89
640
14.9 | 122
642
23.4 | 188
646
139.5 | 192
651
142.7 | 199
656
138.6 | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 103
12947
12947
1682 | 1420.0
15.6 | 16.5 | 14.3 | 978
978
1682
1420.0
16.4 | 17.4 | 16.6 | 6
1517
1517
1682
1420.0
24.7 | 26.2 | 25
1412
1412
1682
1420.0
23.7 | 14.6 | 14.2 | 7.0 | 5
155
155
1682
1420.0
9.8 | 15.3 | 15.8 | 939
939
1682
1420.0
16.3 | | AVE POWER M
PEAK POW MW
ENERGY GWH | W 748.2 | 74
517
26.6 | 77
509
13.0 | 67
509
14.5 | 77
509
55.4 | 81
509
60.6 | 78
509
56.0 | 116
509
85.9 | 122
509
91.1 | 112
517
81.0 | 72
538
53.3 | 71
538
25.7 | 36
538
6.0 | 50
538
9.5 | 77
538
57.3 | 78
538
57.9 | 78
529
54.5 | | FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS | 900
80
117
13649
13650
0
3124 | 585
295
291
3415
1353.6 | 57
1
286
152
134
3549
1355.2
11.0 | 73
1
328
328
3549
1355.2
18.4 | 115
4
1089
1089
0
3549
1355.2
18.3 | 140
9
1200
1200
0
3549
1355.2
19.5 | 185
12
1161
1161
3549
1355.2
19.5 | 74
18
8
1565
1565
0
3549
1355.2
25.5 | 57
15
25
1626
1626
0
3549
1355.2
26.4 | 42
7
31
1415
1559
-144
3405
1353.5
26.2 | 1508
-637
2768
1345.1 | 2
1
10
413
717
-304
2464
1340.4
24.1 | 1
0
4
94
239
-145
2319
1337.9
17.2 | 1
4
151
173
-22
2297
1337.5
10.9 | 10
3
10
941
738
203
2500
1341.0
12.0 | 3
969
719
250
2750
1344.8
11.7 | 19
3
955
581
374
3124
1350.0
10.1 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | | 82
350
29.5 | 93
355
15.6 | 156
355
33.6 | 155
355
111.5 | 165
355
122.8 | 165
355
118.8 | 214
355
159.5 | 223
355
165.6 | 219
349
157.7 | 318 | 182
296
65.7 | 127
285
21.3 | 80
283
15.3 | 89
300
66.1 | 90
317
66.7 | 81
338
56.1 | | GAVINS POI
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FIMSL | 1450
114
-1
38
14947
14947 | 0
0
388
388 | -2
193
193
358 | 55
0
-14
370
370
358
1206.0 | 148
5
0
1232
1232
358
1206.0 | 174
19
-2
1353
1353
358
1206.0 | | 86
39
-11
2
1599
1599
358
1206.0 | | | 3
8
1623
1623
397
1207.5 | | | | | | | | DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH | | 46
114 | 13.9
49
114
8.2 | 20.7
71
114
15.4 | 20.7
71
114
51.4 | 22.0
76
114
56.3 | 21.9
75
114
54.2 |
26.0
89
114
66.1 | 27.6
94
115
70.3 | 27.0
94
117
67.5 | 93
117 | 25.5
89
117
32.2 | 19.5
69
117
11.6 | 13.0
46
117
8.9 | 13.0
46
78
34.3 | 13.0
46
78
34.3 | 13.0
46
76
32.0 | | GAVINS POI
NAT INFLOW
DEPLETION
REGULATED FL | 1550
241
OW AT SI | 169
6
OUX CIT | 79
3
Y | 102 | 199
20 | 310
34 | 224
29 | 129
36 | 33 | 60
22 | 9 | 16
5 | 7 2 | 9 | 21
11 | 5
12 | 82
13 | | KAF
KCFS | 16256 | 551
18.5 | | 468
26.2 | 1411
23.7 | 1629
26.5 | 1498
25.2 | 1692
27.5 | | 1645
27.6 | | 770
25.9 | 276
19.9 | 213
13.4 | 809
13.1 | 791
12.9 | 819
14.2 | | TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE | 44542
R | 76
80
45429 | 35
13
45807 | 860
46
-14
46139 | 2307
273
-22
46741 | 3493
705
-20
47880 | 6073
1329
-32
51094 | 3346
925
-9
95
51719 | 142
0
300
50712 | 1113
-141
48
374
49995 | -25
32
323
49105 | 1
144
48756 | 67
48647 | 241
-60
-3
76
48656 | -32
166
48490 | 582
-198
-2
48477 | 943
-124
-4
48721 | | AVE POWER M
PEAK POW MW
ENERGY GWH
DAILY GWH | | 2138
231.8
15.5 | 109.2 | 700
2144
151.1
16.8 | 776
2153
559.0
18.6 | 840
2166
624.8
20.2 | 890
2202
640.8
21.4 | 1094
2206
814.0
26.3 | | 987
2187
710.6
23.7 | 2172
562.4 | 263.7 | 616
2139
103.4
14.8 | 618
2138
118.6
14.8 | 768
2114
571.7
18.4 | 778
2132
578.5
18.7 | 786
2144
547.2
18.9 | | DATE OF STU | / 09/16 צע | 02 | | | | PRELI | MINARY | 2002-20 | 03 AOP 1 | LOWER Q | UARTILE | RUNOFF | 99001 | 9901 | 9901 P | AGE | 1 | |---|-------------------------|------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------| | TIME OF STU | DY 13:11: | 09 | | | | | | | T, 5-DA | | | ASON | | | STUDY | NO : | 12 | | 28 | FEB03
INI-SUM | 1 1EMAT | 200 | | 30300 | | | | XCEPT A | | | | | 20 | | | | | ~-FORT PEC | K
6000 | 242 | 2 113 | 31MAR
145 | 525 | 925 | 1454 | 633 | 31AUG
263 | 30SEP
252 | 310CT
324 | 15NOV
167 | 22NOV
78 | 30NOV
89 | 31DEC
295 | 31JAN
212 | 29FEB
283 | | DEPLETION
EVAPORATIO
MOD INFLOW
RELEASE | | 227 | 106 | 9
136
89 | 452 | 206
719 | 1283 | 173
28
432 | | -91
111
232 | -61
96
289 | -28
44
151 | -13
20
71 | -15
23
81 | -102
50
347 | -117
329 | -88
371 | | STOR CHANG
STORAGE
ELEV FTMSL | | 78
11000 | 36
11037 | 47
11083
2213.1 | 95
11178 | 461
258
11436
2215.2 | 718 | 584
-153
12001
2218.4 | | 399
-167
11450
2215.2 | 282
6
11456
2215.3 | 137
15
11471
2215.4 | 97
-27
11444
2215.2 | | | -317
10814 | 604
-233
10581 | | DISCH KCFS
POWER
AVE POWER | 9.0
MW | 5.0 | 5.0 | 5.0
63 | 6.0
75 | 7.5
94 | | 9.5 | 9.5 | 6.7 | 4.6 | 4.6 | 7.0 | 8.0 | 2213.4
10.0 | 2211.5
10.5 | 2210.1
10.5 | | PEAK POW M
ENERGY GWH | 879.1 | 186
22.5 | | 187
13.5 | 187
54.2 | 189
70.2 | 195
87.1 | 194
90.7 | 191
90.1 | 190
61.2 | 190
43.3 | 190
20.9 | 190
14.9 | 189
19.4 | 187
93.3 | 185
97.1 | 183
90.1 | | NAT INFLOW
DEPLETION
CHAN STOR | | 24 | 11 | 266
15 | 712
58
-11 | 1197
133
-16 | 2521
547
-21 | 1765
446 | 496
93 | 417
-61
29 | 400
73
22 | 164
-49
0 | 76
-23
-25 | 87
-26
-11 | 222
-6
-21 | 165
13
-5 | 262
27 | | EVAPORATIO
REG INFLOW
RELEASE
STOR CHANG | 13335
13750 | | 208 | 341
268 | 1000
1041 | 1509
1261 | 2518
1369 | 33
1870
1383 | 104
883
1353 | 130
776
916 | 113
519
766 | 51
298
371 | 24
147
236 | 27
203
286 | 58
764
1230 | 792
1322 | 839
1265 | | STORAGE
ELEV FTMSL
DISCH KCFS | 13150
1819.5
23.5 | 13285 | 13341
1820.3 | 73
13414
1820.6
15.0 | -41
13373
1820.4
17.5 | 249
13622
1821.4
20.5 | | 487
15258
1827.6
22.5 | -470
14788
1825.9
22.0 | -140
14648
1825.3
15.4 | -247
14401
1824.4
12.5 | -73
14328
1824.1
12.5 | -89
14239
1823.8
17.0 | -83
14157
1823.5
18.0 | -465
13691
1821.6
20.0 | -530
13161
1819.5
21.5 | -426
12735
1817.8
22.0 | | POWER
AVE POWER
PEAK POW M
ENERGY GWH | | 178
326
64.1 | 327 | 168
328
36.2 | 195
327
140.8 | 229
330
170.5 | 262
343
188.3 | 261
349
194.4 | 256
343
190.2 | 178
342
128.3 | 144
339
107.1 | 143
338
51.6 | 195
337
32.7 | 205
336
39.4 | 226
331
168.3 | 240
325
178.4 | 242
320 | | OAHE-
NAT INFLOW
DEPLETION | 1449
570 | 154 | 72 | 92 | 229 | 130 | 577 | 102 | 24 | 65 | 9 | | 32.7 | 33.4 | -35 | -6 | 168.4
36 | | CHAN STOR
EVAPORATION
REG INFLOW | 6 | 22
36
644 | | 13
0
347 | 45
-12
1213 | 62
-14
1314 | 120
-12
1814 | 138
2
30
1320 | 90
2
94
1195 | 23
32
115
875 | -7
14
98
698 | 44
325 | 1
-23
20
192 | 1
-5
23
256 | 11
-10
51 | 15
-8 | 25
-2 | | RELEASE
STOR CHANG
STORAGE
ELEV FTMSL | 13749 | 500
144
13893 | | 365
-18
13875 | 1237
-24
13851 | 1398
-84
13767 | 1262
552
14319 | 1719
-400
13919 | 1694
-499
13420 | 1349
-474
12946 | 993
-295
12651 | 449
-123
12528 | 230
-38
12490 | 186
70
12560 | 1123
1135
-12
12548 | 1293
1012
282
12830 | 1274
781
493
13323 | | DISCH KCFS POWER AVE POWER | 1589.0
16.6
W | 1589.5
16.8
197 | 1589.5
19.8
232 | 1589.5
20.4
239 | 1589.4
20.8 | 1589.0
22.7
266 | 1591.3
21.2
249 | 1589.7
28.0
328 | 1587.6
27.6 | 1585.6
22.7
261 | 1584.3
16.1 | 1583.7
15.1 | 1583.6
16.5 | 1583.9
11.7 | 18.5 | 1585.1
16.5 | 1587.2
13.6 | | PEAK POW MY
ENERGY GWH
BIG BENI | 2043.8 | 619
70.8 | 619
39.0 | 618
51.7 | 618
175.2 | 616
197.5 | 627
179.4 | 619
244.3 | 609
238.2 | 598
187.8 | 591
137.2 | 588
61.7 | 588
31.5 | 133
589
25.6 | 209
589
155.7 | 187
595
139.4 | 156
607
108.8 | | EVAPORATION
REG INFLOW
RELEASE | | 500
500 | 275
275 | 365
365 | 1237
1237 | 1398
1398 | 1262
1262 | 8
1712
1712 | 24
1670
1670 | 31
1318
1318 | 27
966
966 | 12
436
436 | 6
224 | 7
180 | 14
1121 | 1012 | 781 | | STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 1682
1420.0
16.6 | 1682
1420.0
16.8 | 1682
1420.0
19.8 | 1682 | 1682 | 1682
1420.0
22.7 | 1682 | 1682
1420.0
27.8 | 1682 | 1682 | 1682
1420.0
15.7 | 1682 | 224
1682
1420.0
16.1 | 180
1682
1420.0
11.3 | 1121
1682
1420.0
18.2 | 1012
1682
1420.0
16.5 | 781
1682
1420.0
13.6 | | AVE POWER N
PEAK POW MV
ENERGY GWH | | 80
517
28.6 | 93
510
15.6 | 96
509
20.7 | 97
509
70.1 | 106
509
79.2 | 99
509
71.5 | 130
509
96.9 | 127
509
94.6 | 105
523
75.7 | 78
538
58.1 | 74
538
26.6 | 81
538
13.7 | 57
538
11.0 | 90
538
67.0 | 80
538
59.6 | 65
529
45.4 | | FORT RANDA
NAT INFLOW
DEPLETION | LL-~
500
80 | 68
1 | 32
1 | 41
1 | 64
4 | 51
9 | 130
12 | 26
18 | 49
15 | 23 | 1
1 | 1 | 0 | | 5 | -5 | 15 | | EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE | 14732
14733 | 566
295
272 | 306
171 | 405
388 | 1297
1297 | 1440
1440 | 1380
1380 | 10
1710
1710 | 32
1672
1672 | 39
1295
1610 | 29
937
1571 | 11
424
709 | 5
219
237 | 1
5
174
175 | 3
13
1110
744 | 3
1004
732 | 3
793
604 | | STORAGE
ELEV FTMSL
DISCH KCFS | 3124
1350.0
10.5 | 3396
1353.4
9.9 | 136
3532
1355.0
12.3 | 17
3549
1355.2
21.7 | 3549
1355.2
21.8 | 3549
1355.2
23.4 | 3549
1355.2
23.2 | 3549
355.2
1355.2
27.8 | 3549
1355.2
27.2 | -315
3234
1351.4
27.1 | -634
2600
1342.6
25.5 | -285
2315
1337.8
23.8 | -18
2297
1337.5
17.0 | 2297
1337.5
11.0 | 366
2663
1343.5
12.1 | 272
2935
1347.5
11.9 | 189
3124
1350.0
10.5 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | | 82
349
29.5 | 104
354
17.4 | 183
355
39.6 | 184
355
132.5 | 197
355
146.9 | 196
355
140.9 | 234
355
174.0 | 229
355
170.2 | 224
342
161.4 | 201
306
149.4 | 177
285
63.6 | 124
284
20.8 | 80
284
15.4 | 91
311 | 93
329 | 85
338 | | GAVINS POI
NAT INFLOW
DEPLETION | NT
1251
114 | 91
0 | 43
0 | 55
0 | 124
5 | 138 | 143 | 81 | 80 | 58 | 105 | 47 | 22 | 25 | 67.5
70 | 69.4 | 58.9
101 | | CHAN STOR
EVAPORATION
REG INFLOW | -1
47
15822 | 1
388 | -5
209 | -18
425 | 0
1416 | 19
-3
1556 | 24
0
1500 | 39
-9
3
1740 | 10
1
9
1735 | -5
0
11
1662 | 2
3
10
1666 | 5
3
5
750 | 2
13
2
267 |
3
11
2
206 | 10
-2
5
797 | 1
0
799 | 3
708 | | RELEASE
STOR CHANGE
STORAGE
ELEV FTMSL | 358 | 388
358
1206.0 | 358
1206 0 | 425
358 | 358 | 358 | 1500
358 | 1740 | 1722
13
371
1206.5 | 1636
26 | 1666 | 750 | 267 | 206
397 | 797
397 | 799
397 | 747
-39
358 | | DISCH KCFS
POWER
AVE POWER M | W 15.0 | 46 | 52 | 82 | 23.8 | 25.3 | 25.2
86 | 28.3 | 28.0
28.0 | 27.5
27.5 | 1207.5 :
27.1
95 | 1207.5
25.2
88 | 1207.5
19.2
68 | 1207.5
13.0
46 | 1207.5
13.0
46 | 1207.5 1
13.0 | 13.0 | | PEAK POW MW
ENERGY GWH
GAVINS POI | 662.7 | 114
16.4
X CITY- | 114
8.8 | 114
17.6 | 114
58.7 | 114
64.4 | 114
62.1 | 114
71.6 | 115
71.3 | 117
68.7 | 117
70.6 | 117
31.8 | 117
11.4 | 117 | 78
34.2 | 46
78
34.3 | 46
76
31.8 | | NAT INFLOW
DEPLETION
REGULATED FL | 900
241
OW AT SIO | 115
6
UX CITY | 54
3 | 69
3 | 90
20 | 174
34 | 125
29 | 75
36 | 56
33 | 35
22 | 24
9 | 13
5 | 6
2 | 7
3 | 13
11 | -3
12 | 48
13 | | KAF
KCFS
TOTAL | 16481 | 497
16.7 | 260
18.7 | 491
27.5 | 1486
25.0 | 1696
27.6 | 1596
26.8 | 1779
28.9 | 1745
28.4 | 1649
27.7 | 1681
27.3 | 757
25.5 | 270
19.5 | 210
13.2 | 799
13.0 | 784
12.8 | 782
13.6 | | NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION | 19500
2395
-11 | 1114
68
80 | 520
32
0 | 668
41
-18 | 1744
205
-23 | 2615
463
-33 | 4950
903
-33 | 2682
850
-6 | 968
216
4 | 850
-105
61 | 863
17
39 | 390
-64
3 | 182
-30
-36 | 208
-34
-4 | 570
-73
-33 | 431
-73
-12 | 745
-20
0 | | STORAGE
SYSTEM POWER
AVE POWER M | | 43614
644 | 43842
711 | 43961
831 | 43991
877 | 44414
979 | 46833
1013 | 112
46767
1172 | 352
45426
1149 | 437
44357 | 374
43187 | 166
42720 | 77
42 550 | 88
42491 | 191
42111 | 41819 | 41802 | | PEAK POW MW
ENERGY GWH
DAILY GWH | 7764.1 | 2112
231.9
15.5 | 2111 | 2111
179.4
19.9 | 2111 | 2114
728.7
23.5 | 2144 | 2140
872.0
28.1 | 2122 | 949
2112
683.2
22.8 | 760
2081
565.6
18.2 | 712
2056
256.2
17.1 | 743
2053
124.9
17.8 | 623
2053
119.7
15.0 | 788
2035
586.1
18.9 | 777
2050
578.2
18.7 | 723
2052
503.5
17.4 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 3.0.TIN | 31.7777 | 312110 | 20000 | | | | | | | | DATE OF STUDY 09/16/02 PRELIMINARY 2002-2003 AOP LOWER DECILE RUNOFF 99001 9901 9901 PAGE 1 THE OF STUDY 13.59.11 CWCP FLOW TO TARGET. 5-DAY SHORTENED SEASON STUDY NO 13 | DATE OF STUDY | 09/16/0 | 2 | | | | | | | 3 AOP L | | | | 99001 | 9901 9 | 901 PA | | T | |--|---|---|--|---|--|---|--|---|--|--|---|---|--|--|---|---|---| | TIME OF STUDY | 12:59:1 | .1 | | | | CWCP,
VALUES | FLOW TO
IN 100 | TARGET
0 AF EX | CEPT AS | SHORTE | NED SEA
TED | SON | | 200 | STUDY | NO I | 3 | | 28FI | BO3
INI-SUM | 15MAR | 2003
22MAR | 31MAR | 30APR | 31MAY | 30JUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 200
30NOV | | 31JAN | 29FEB | | FORT PECK. NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS | 5100
42
444
4614
5924
-1310
10922
2212.1
9.0 | 234
15
219
149
70
10992
2212.6
5.0 | 109
7
102
69
33
11025
2212.8
5.0 | 140
9
131
89
42
11067
2213.0
5.0 | 515
73
442
357
85
11152
2213.5
6.0 | 783
206
577
492
85
11237
2214.0
8.0 | 996
171
825
536
289
11527
2215.7
9.0 | 439
100
27
312
553
-242
11285
2214.3
9.0 | 253
-52
85
220
553
-334
10951
2212.3
9.0 | 242
-122
106
258
448
-190
10761
2211.2
7.5 | 320
-87
93
314
317
-2
10759
2211.2
5.1 | 159
-25
42
141
153
-12
10747
2211.1
5.1 | 74
-11
20
66
97
-31
10715
2210.9
7.0 | 85
-13
22
75
127
-52
10663
2210.6
8.0 | 271
-88
48
311
615
-304
10359
2208.7 | 205
-83
288
707
-419
9940
2206.1
11.5 | 275
-58
333
661
-328
9612
2204.1
11.5 | | POWER
AVE POWER MY
PEAK POW MW
ENERGY GWH | | 62
186
22.5 | 63
186
10.5 | 63
187
13.5 | 75
187
54.1 | 100
188
74.6 | 113
190
81.6 | 113
188
84.4 | 113
186
83.7 | 93
184
67.3 | 64
184
47.5 | 64
184
23.0 | 87
184
14.6 | 99
183
19.0 | 123
181
91.3 | 139
177
103.7 | 138
175
95.9 | | GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS | 7299
1115
-27
513
11567
13164
-1597
13150
1819.5 | 270
24
43
437
476
-39
13111
1819.3
16.0 | 126
11
184
208
-24
13087
1819.2
15.0 | 162
15
237
268
-31
13056
1819.1
15.0 | 700
58
-11
988
952
36
13092
1819.3
16.0 | 903
133
-21
1240
1107
134
13226
1819.8
18.0 | 2020
547
-11
1998
1250
748
13974
1822.8
21.0 | 1277
361
32
1438
1261
177
14152
1823.4
20.5 | 361
64
99
751
1230
-479
13673
1821.6
20.0 | 277
-64
16
124
681
912
-231
13441
1820.7
15.3 | 390
66
25
107
559
763
-204
13237
1819.8
12.4 | 161
-53
48
319
369
-50
13187
1819.6 | 75
-25
-20
22
155
236
-81
13106
1819.3
17.0 | 86
-28
-11
26
205
286
-81
13025
1819.0
18.0 | 108
-12
-21
55
659
1230
-571
12454
1816.6
20.0 | 160
4
-16
847
1353
-506
11948
1814.5
22.0 | 223
14
870
1265
-395
11553
1812.8
22.0 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | | 178
324
63.9 | 167
324
28.0 | 166
324
35.9 | 177
324
127.7 | 200
326
148.6 | 235
334
169.4 | 233
336
173.1 | 226
331
168.3 | 172
328
124.0 | 139
326
103.3 | 138
325
49.8 | 189
324
31.7 | 199
323
38.2 | 219
316
162.9 | 237
310
176.1 | 234
305
162.5 | | OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS | 1049
570
5
444
13205
14843
-1638
13749
1589.0
16.6 | 197
22
36
688
501
186
13935
1589.7
16.9 | 92
10
5
295
297
-2
13933
1589.7
21.4 | 118
13
0
373
375
-2
13930
1589.7
21.0 | 183
45
-5
1085
1262
-177
13754
1589.0
21.2 | 100
62
-10
1135
1421
-286
13468
1587.8
23.1 | 215
120
-15
1330
1277
53
13521
1588.0
21.5 | 82
138
2
29
1178
1737
-559
12962
1585.6
28.3 | 21
90
2
88
1075
1711
-636
12326
1582.8
27.8 | 64
23
24
108
869
1385
-516
11810
1580.5
23.3 | 5
-7
15
91
699
1047
-348
11462
1578.8
17.0 | -5
2
40
322
453
-131
11331
1578.2
15.2 | -2
1
-24
19
190
232
-42
11289
1578.0
16.7 | -3
1
-5
21
255
189
66
11355
1578.3
11.9 | -48
11
-11
47
1113
983
131
11486
1578.9
16.0 | -12
15
-10
1315
997
318
11804
1580.4
16.2 | 41
25
1281
975
307
12111
1581.8
16.9 | | POWER AVE POWER M PEAK POW MW ENERGY GWH | W
2039.5 | 197
620
71.1 | 251
620
42.2 | 246
619
53.2 | 248
616
178.6 | 269
610
199.8 | 249
611
179.2 | 325
598
241.7 | 315
584
234.4 | 260
571
187.1 | 188
562
140.1 | 167
559
60.3 | 183
558
30.7 | 131
560
25.1 | 176
563
130.7 | 179
571
133.5 | 189
579
131.6 | | BIG BEND
EVAPORATION
REG INFLOW
RELEASE
STORAGE
ELEV FTMSL
DISCH KCFS
POWER | 129
14714
14714
1682
1420.0
16.6 | 16.9 | 297
297
1682
1420.0
21.4 | 375
375
1682
1420.0
21.0 | 1262
1262
1682
1420.0
21.2 | 1421
1421
1682
1420.0
23.1 | 1277
1277
1682
1420.0
21.5 | 8
1730
1730
1682
1420.0
28.1 | 24
1687
1687
1682
1420.0
27.4 | 31
1354
1354
1682
1420.0
22.8 |
27
1020
1020
1682
1420.0
16.6 | 12
441
441
1682
1420.0
14.8 | 6
226
226
1682
1420.0
16.3 | 7
183
183
1682
1420.0
11.5 | 15.8 | 997
997
1682
1420.0
16.2 | 975
975
1682
1420.0
16.9 | | AVE POWER M
PEAK POW MW
ENERGY GWH | 850.3 | 80
518
28.7 | 100
510
16.9 | 98
509
21.3 | 99
509
71.5 | 108
509
80.5 | 100
509
72.3 | 132
509
97.9 | 128
509
95.5 | 108
523
77.8 | 538
61.3 | 75
538
26.9 | 82
538
13.8 | 58
538
11.2 | 79
538
58.8 | 80
538
59.3 | 81
529
56.6 | | FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER | 300
80
143
14791
14792
-1
3124
1350.0 | 55
1
555
298
258
3382
1353.2
10.0 | | | | | 120
12
1385
1385
3549
1355.2
23.3 | 13
18
10
1715
1715
0
3549
1355.2
27.9 | | | | -3
1
11
426
711
-285
2315
1337.8
23.9 | | | | 988
738
250
2750
1344.8
12.0 | | | AVE POWER M
PEAK POW MW
ENERGY GWH | 1460.0 | 83
348
29.8 | 105
354
17.6 | 185
355
39.9 | 185
355
132.9 | 198
355
147.7 | 196
355
141.4 | 235
355
174.5 | 229
355
170.6 | 225
342
161.7 | 201
306
149.4 | 177
285
63.7 | 124
284
20.9 | 81
284
15.5 | 90
300
67.2 | 92
317
68.4 | 85
338
58.8 | | GAVINS POI
NAT INFLOW
DEPLETION
CHAN STOR
EVAPORATION
REG INFLOW
RELEASE
STOR CHANGE
STORAGE
ELEV FIMSL
DISCH KCFS | 1200
114
-1
47
15829
15829 | 386
386
358
1206.0 | 41
0
-5
209
209
358
1206.0
15.0 | 52
0
-18
425
425
358
1206.0
23.8 | 120
5
0
1416
1416
358
1206.0
23.8 | 131
19
-3
1556
1556
358
1206.0
25.3 | 138
24
0
1500
1500
358
1206.0
25.2 | 76
39
-9
3
1740
1740
358
1206.0
28.3 | 76
10
1
9
1735
1722
13
371
1206.5
28.0 | 55
-5
0
11
1662
1636
26
397
1207.5
27.5 | 104
2
3
10
1666
1666
397
1207.5
27.1 | 45
5
3
5
750
750
397
1207.5
25.2 | 21
2
13
2
267
267
267
1207.5
19.2 | 24
3
11
2
206
206
397
1207.5
13.0 | 67
10
-2
5
800
800
397
1207.5
13.0 | 65
1
0
802
802
397
1207.5
13.0 | 98
3
710
749
-39
358
1206.0 | | POWER
AVE POWER M
PEAK POW MW
ENERGY GWH | | 45
114
16.3 | 52
114
8.8 | 82
114
17.6 | 82
114
58.7 | 87
114
64.4 | 86
114
62.1 | 96
114
71.6 | 96
115
71.3 | 95
117
68.7 | 95
117
70.6 | 88
117
31.8 | 68
117
11.4 | 46
117
8.9 | 46
78
34.4 | 46
78
34.5 | 46
76
32.0 | | GAVINS POI
NAT INFLOW
DEPLETION
REGULATED FL
KAF
KCFS | 550
241 | 36
6
OUX CIT | 17
3 | 22
3
443
24.8 | 77
20
1473
24.8 | 144
34
1666
27.1 | 106
29
1577
26.5 | 47
36
1751
28.5 | 22
33
1711
27.8 | 15
22
1629
27.4 | 14
9
1671
27.2 | 10
5
754
25.4 | 4
2
269
19.4 | 5
3
209
13.1 | 10
11
799
13.0 | -5
12
785
12.8 | 26
13
762
13.3 | | TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE | 42985
R | 68
80 | 411
32
0
43617 | 528
41
-18
43643 | 1638
205
-15
43587 | 2096
463
-34
43520 | 3595
903
-25
44611 | 1934
692
-6
108
43987 | 769
160
4
338
42552 | 643
-139
40
419
41325 | 781
-16
43
358
40136 | 367
-65
3
159
39658 | 171
-30
-32
73
39485 | 195
-35
-4
84
39419 | 408
-65
-34
182
38877 | 407
-48
-26
38521 | 675
-3
3
38439 | | AVE POWER M
PEAK POW MW
ENERGY GWH
DAILY GWH | W | 645
2111
232.3
15.5 | 737
2109
123.9
17.7 | 840
2108
181.5
20.2 | 866
2106
623.6
20.8 | 962
2102
715.5
23.1 | 981
2114
706.0
23.5 | 1133
2102
843.3
27.2 | 1107
2079
823.8
26.6 | 954
2066
686.7
22.9 | 769
2034
572.4
18.5 | 710
2008
255.6
17.0 | 732
2005
123.0
17.6 | 614
2005
118.0
14.7 | 733
1976
545.3
17.6 | 773
1992
575.5
18.6 | 772
2001
537.4
18.5 | | | INI-SUM | 15MAR | 22MAR | 31MAR | 30APR | 31MAY | 3 OJUN | 31JUL | 31AUG | 30SEP | 310CT | 15NOV | 22NOV | 30NOV | 31DEC | 31JAN | 29FEB |